【WSN布局】基于LICHTENBERG算的多目标传感器选择和放置优化问题研究附matlab代码

简介: 【WSN布局】基于LICHTENBERG算的多目标传感器选择和放置优化问题研究附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

随着无线传感器网络(Wireless Sensor Network,WSN)技术的不断发展,越来越多的WSN技术已经应用到了智能家居,智慧交通等领域.WSN属于一种重要的ad hoc网络,它由很多具有感知和数据处理能力的传感节点以自组织或多跳的方式搭建.目前,WSN的研究工作主要集中在网络技术和通信协议方面,关于传感器网络部署优化的研究还很少.在空旷的农场或森林部署WSN,一般做法是通过飞机进行高空随机抛撒.但是,这种方法可能出现大量的多余节点和覆盖漏洞.因此,如何用尽量少的传感节点感知最大的区域是WSN部署优化中一个亟待研究的问题.在广阔的农场环境或森林中,需要准备许多传感节点,节点大部分靠电池供电,但是,电池能量是有限的,并且无法更换.因此,如何使用相同数量的节点,达到最长的网络寿命成为WSN部署优化中另一个倍受瞩目的问题.

⛄ 部分代码

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

%           Multi-objective Sensor Selection Optimization based on

%                      Lichtenberg Algorithm (MOSSOLA)

%

%         AUTHORS: Jo茫o Luiz Junho Pereira and Guilherme Ferreira Gomes

%

%         A Hybrid PHYSICS-based Multi-objective Metaheuristic with

%         Feature Selection for Sensor Placement Optimization (SPO)

%

%   Please cite this algorithm as:

%

% Pereira, J.L.J., Francisco, M.B., Souza Chaves, J. A., Sebasti茫o Sim玫es Cunha Jr & Gomes, G. F.

% Multi-objective sensor placement optimization of helicopter rotor blade based on feature selection.

% Mechanical Systems and Signal Processing. 2022.


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


close all

clear all

clc

format long

warning off


set(0,'DefaultAxesFontName', 'Times New Roman')

set(0,'DefaultAxesFontSize', 12)

set(0,'DefaultTextFontname', 'Times New Roman')

set(0,'DefaultTextFontSize', 12)

opengl('save', 'software')


% Importing natural frequencies in FEM structure (Main Rotor Blade - MRB)

F=importdata('natural_frequencies.txt');

wn1=F.data(1:9,2); wn = [wn1(1) wn1(2) wn1(3) wn1(4) wn1(6) wn1(9)];


% Importing All sensor candidates from FEM structure (34 well spaced nodes

% in MRB)

S=importdata('Sensors.txt');


% Importing mode shapes in FEM structure (MRB)

M1=importdata('Mode1.txt'); M1x=M1.data(:,5); M1y=M1.data(:,6);M1z=M1.data(:,7);

M2=importdata('Mode2.txt'); M2x=M2.data(:,5); M2y=M2.data(:,6);M2z=M2.data(:,7);

M3=importdata('Mode3.txt'); M3x=M3.data(:,5); M3y=M3.data(:,6);M3z=M3.data(:,7);

M4=importdata('Mode4.txt'); M4x=M4.data(:,5); M4y=M4.data(:,6);M4z=M4.data(:,7);

M6=importdata('Mode6.txt'); M6x=M6.data(:,5); M6y=M6.data(:,6);M6z=M6.data(:,7);

M9=importdata('Mode9.txt'); M9x=M9.data(:,5); M9y=M9.data(:,6);M9z=M9.data(:,7);


% Calculating Total displacements (triaxial)

M1T = sqrt(M1x.^2+M1y.^2+M1z.^2); M2T = sqrt(M2x.^2+M2y.^2+M2z.^2); M3T = sqrt(M3x.^2+M3y.^2+M3z.^2);

M4T = sqrt(M4x.^2+M4y.^2+M4z.^2); M6T = sqrt(M6x.^2+M6y.^2+M6z.^2); M9T = sqrt(M9x.^2+M9y.^2+M9z.^2);

Modos = [M1T M2T M3T M4T M6T M9T];


% Optimizator Parameters

UB = ones(1,length(S)); % Uper bounds

LB = 0*UB;              % lower bounds

pop = 100;              % Population

n_iter = 100;           % Max number os iterations/gerations

ref = 0.4;              % if more than zero, a second LF is created with refinement % the size of the other

Np = 100000;            % Number of Particles (If 3D, better more than 10000)

S_c = 1;                % Stick Probability: Percentage of particles that can don麓t stuck in the

                       % cluster. Between 0 and 1. Near 0 there are more aggregate, the density of

                       % cluster is bigger and difusity is low. Near 1 is the opposite.

Rc = 150;               % Creation Radius (if 3D, better be less than 80, untill 150)

M = 0;                  % If M = 0, no lichtenberg figure is created (it is loaded a optimized figure); if 1, a single is created and used in all iterations; If 2, one is created for each iteration.(creating an LF figure takes about 2 min)

d = length(UB);         % problem dimension

ngrid = 30;             % Number of grids in each dimension

Nr = 100;               % Maximum number of solutions in PF


% Sensor Placement Optimization Parameters

C = 1;                 % METRIC USED (KE=1;EfI=2,ADPR=3;EVP=4;IE=5;FIM=6;MAC=7)

NS = 6;                % Sensor Congiguration solution with NS sensors (select from PARETO FRONT after optimization with all sensors numbers)


[x,fval] = LA_optimization(@(x)objectives(x,Modos,S,wn,C),d,pop,LB,UB,ref,n_iter,Np,Rc,S_c,M,ngrid,Nr,@constraint);


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%PARETO FRONT FIGURE%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


% figure

% plot(fval(:,1),fval(:,2),'ZDataSource','',...

%     'MarkerFaceColor',[0 0 1],...

%     'MarkerEdgeColor',[0 0 0],...

%     'MarkerSize',4,...

%     'Marker','o',...

%     'LineWidth',0.1,...

%     'LineStyle','none',...

%     'Color',[0 0 0]);

% hold on

% box on

% %plot(fval(best_pos,1),fval(best_pos,2),'MarkerFaceColor',[1 1 0],'MarkerSize',14,'Marker','pentagram','LineWidth', 0.2, 'LineStyle','none','Color',[0 0 0]);

% %legend('PF','TOPSIS');

% % set(0,'DefaultAxesFontSize', 10)

% % set(0,'DefaultTextFontSize', 10)

% set(findall(gcf,'-property','FontName'),'FontName','Italic')

% set(findall(gcf,'-property','FontAngle'),'FontAngle','italic')

% set(gcf,'position',[200,200,350,200])

% %title('Non-dominated solutions','fontweight','bold');

% % axis([0 -0.01 0 30])

% xlabel('J=max(diag(MAC))')

% ylabel('Number of Sensors')


%%%%%%%%%%%%%%%%%%%%%%%%%%%TO CALCULATE HYPERVOLUME%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Simulation = 0;

% for i =1:10

%  Simulation = Simulation + 1

% [x,fval] = LA_optimization(@(x)objectives(x,Modos,S,wn,C),d,pop,LB,UB,ref,n_iter,Np,Rc,S_c,M,ngrid,Nr,@constraint);

% HV_Score(i) = HV(fval,length(S))

% end

%

% mean(HV_Score)


%%%%%%%%%%%%%%%%%%%%%%%%TO PLOT THE SELECTED SENSORS IN STRUCTURE%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

x = round(x);

for i = 1 : length(x)

P(i) = sum(x(i,:));

end

best_pos=find(P==NS);

Xbest = round(x(best_pos,:));

for i=1:length(S)

  SLCT(i) = S(i)*Xbest(1,i);

end

SLCT(find(SLCT==0))=[];

FITNESS = fval(best_pos,:);

NUMBERofSENSORS = FITNESS(1,2)

METRICfitness = FITNESS(1,1)

SENSORS = SLCT

ALLNODES = importdata('NODES.txt'); %ALL NODES IN FEM STRUCTURE (TO PLOT STRUCTURAL FIGURE)

NODES = [ALLNODES(:,2) ALLNODES(:,3)];

theta = -90; % to structure figure rotate in 90掳 counterclockwise

R = [cosd(theta) -sind(theta); sind(theta) cosd(theta)];

C = (R*NODES')';

%Sensor Points

for i = 1 : length(SENSORS)

   PS(i,:) = [C(SENSORS(i),1) C(SENSORS(i),2)];

end

%Plot

figure

plot(C(:,1),C(:,2),'.k')

hold on

plot(PS(:,1),PS(:,2),'ZDataSource','',...

   'MarkerFaceColor',[1 0 0],...

   'MarkerEdgeColor',[1 0 0],...

   'MarkerSize',8,...

   'Marker','o',...

   'LineWidth',0.1,...

   'LineStyle','none',...

   'Color',[1 0 0]);

axis equal

axis([-1 5.2 -0.5 0.2])

set(gcf,'position',[200,200,900,300])

⛄ 运行结果

⛄ 参考文献

[1]伊廷华, 李宏男, 顾明,等. 基于MATLAB平台的传感器优化布置工具箱的开发及应用[J]. 土木工程学报, 2010(12):7.

[2]郎健. 无线传感器网络部署优化研究与仿真[D]. 北京工业大学.

⛄ Matlab代码关注

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料



相关文章
|
1月前
|
传感器 算法 Go
基于EKF扩展卡尔曼滤波的传感器网络目标跟踪matlab仿真
基于EKF扩展卡尔曼滤波的传感器网络目标跟踪matlab仿真
|
4天前
|
机器学习/深度学习 算法 网络架构
matlab使用贝叶斯优化的深度学习
matlab使用贝叶斯优化的深度学习
|
12天前
|
存储 人工智能 机器人
【Matlab】Matlab电话拨号音合成与识别(代码+论文)【独一无二】
【Matlab】Matlab电话拨号音合成与识别(代码+论文)【独一无二】
|
24天前
|
机器学习/深度学习 算法 数据可视化
基于GA优化的CNN-GRU-Attention的时间序列回归预测matlab仿真
该内容描述了一个使用CNN-LSTM-Attention模型优化时间序列预测的过程。在优化前后,算法的预测效果有明显提升,软件版本为matlab2022a。理论部分介绍了CNN用于特征提取,LSTM处理序列依赖,Attention关注重要信息,以及遗传算法(GA)优化超参数。提供的核心代码展示了GA的优化迭代和模型训练,以及预测结果的可视化比较。
|
27天前
|
算法 搜索推荐
基于遗传优化的协同过滤推荐算法matlab仿真
该内容是关于推荐系统和算法的描述。使用Matlab2022a执行的算法生成了推荐商品ID列表,显示了协同过滤在个性化推荐中的应用。用户兴趣模型通过获取用户信息并建立数学模型来提高推荐性能。程序片段展示了遗传算法(GA)的迭代过程,确定支持度阈值,并基于关联规则生成推荐商品ID。最终结果是推荐的商品ID列表,显示了算法的收敛和支持值。
|
2月前
|
机器学习/深度学习 算法 计算机视觉
霍夫变换车道线识别-车牌字符识别代码(matlab仿真与图像处理系列第5期)
霍夫变换车道线识别-车牌字符识别代码(matlab仿真与图像处理系列第5期)
30 2
|
2月前
|
算法
MATLAB | 插值算法 | 一维interpl插值法 | 附数据和出图代码 | 直接上手
MATLAB | 插值算法 | 一维interpl插值法 | 附数据和出图代码 | 直接上手
36 0
|
2月前
|
算法
MATLAB | 插值算法 | 二维interp2插值法 | 附数据和出图代码 | 直接上手
MATLAB | 插值算法 | 二维interp2插值法 | 附数据和出图代码 | 直接上手
59 0
|
3月前
|
Perl
【MFAC】基于全格式动态线性化的无模型自适应控制(Matlab代码)
【MFAC】基于全格式动态线性化的无模型自适应控制(Matlab代码)
|
3月前
【数值分析】迭代法求方程的根(附matlab代码)
【数值分析】迭代法求方程的根(附matlab代码)

热门文章

最新文章