常见的限流算法分析以及手写实现(计数器、漏斗、令牌桶)

简介: 限流是指在高并发、大流量请求的情况下,限制新的流量对系统的访问,从而保证系统服务的安全性。

常见的限流算法分析🥂

为什么要限流👀

👩🏻‍🏫在保证可用的情况下尽可能多增加进入的人数,其余的人在排队等待,或者返回友好提示,保证里面的进行系统的用户可以正常使用,防止系统雪崩

限流算法🌴🌴

限流算法很多,常见的有三类,分别是 计数器算法 漏桶算法令牌桶算法

(1) 计数器:

          在一段时间间隔内,处理请求的最大数量固定,超过部分不做处理。

(2)漏桶:

          漏桶大小固定,处理速度固定,但请求进入速度不固定(在突发情况请求过多时,会丢弃过多的请求)。

(3)令牌桶:

          令牌桶的大小固定,令牌的产生速度固定,但是消耗令牌(即请求)速度不固定(可以应对一些某些时间请求过多的情况);每个请求都会从令牌桶中取出令牌,如果没有令牌则丢弃该次请求。

计数器限流✨

🍺在一段时间间隔内,处理请求的最大数量固定,超过部分不做处理。

举个🌰,比如我们规定对于A接口,我们1分钟的访问次数不能超过100次。

那么我们可以这么做:

🎈在一开 始的时候,我们可以设置一个计数器counter,每当一个请求过来的时候,counter就加1,如果counter的值大于100并且该请求与第一个请求的间隔时间还在1分钟之内,那么说明请求数过多,拒绝访问;

🍬如果该请求与第一个请求的间隔时间大于1分钟,且counter的值还在限流范围内,那么就重置 counter,就是这么简单粗暴。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-pkGvVRdd-1647523333397)(/upload/2021/09/image-0cbbc44ec76d446896e989962e8122e5.png)]

代码实现: 😎

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;

//计数器 限流
public class CounterLimiter {

    //起始时间
    private static long startTime = System.currentTimeMillis();

    //时间间隔1000ms
    private static long interval = 1000;

    //每个时间间隔内,限制数量
    private static long limit = 3;

    //累加器
    private static AtomicLong accumulator = new AtomicLong();

    /**
     * true 代表放行,请求可已通过
     * false 代表限制,不让请求通过
     */
    public static boolean tryAcquire() {
        long nowTime = System.currentTimeMillis();
        //判断是否在上一个时间间隔内
        if (nowTime < startTime + interval) {
            //如果还在上个时间间隔内
            long count = accumulator.incrementAndGet();
            if (count <= limit) {
                return true;
            } else {
                return false;
            }
        } else {
            //如果不在上一个时间间隔内
            synchronized (CounterLimiter.class) {
                //防止重复初始化
                if (nowTime > startTime + interval) {
                    startTime = nowTime;
                    accumulator.set(0);
                }
            }
            //再次进行判断
            long count = accumulator.incrementAndGet();
            if (count <= limit) {
                return true;
            } else {
                return false;
            }
        }
    }


    // 测试
    public static void main(String[] args) {

        //线程池,用于多线程模拟测试
        ExecutorService pool = Executors.newFixedThreadPool(10);
        // 被限制的次数
        AtomicInteger limited = new AtomicInteger(0);
        // 线程数
        final int threads = 2;
        // 每条线程的执行轮数
        final int turns = 20;
        // 同步器
        CountDownLatch countDownLatch = new CountDownLatch(threads);
        long start = System.currentTimeMillis();
        for (int i = 0; i < threads; i++) {
            pool.submit(() ->
            {
                try {

                    for (int j = 0; j < turns; j++) {

                        boolean flag = tryAcquire();
                        if (!flag) {
                            // 被限制的次数累积
                            limited.getAndIncrement();
                        }
                        Thread.sleep(200);
                    }

                } catch (Exception e) {
                    e.printStackTrace();
                }
                //等待所有线程结束
                countDownLatch.countDown();
            });
        }
        try {
            countDownLatch.await();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        float time = (System.currentTimeMillis() - start) / 1000F;
        //输出统计结果
        System.out.println("限制的次数为:" + limited.get() +
                ",通过的次数为:" + (threads * turns - limited.get()));
        System.out.println("限制的比例为:" + (float) limited.get() / (float) (threads * turns));
        System.out.println("运行的时长为:" + time + "s");
    }

}

计数器限流的不足: 🤷‍♀️

这个算法虽然简单,但是存在临界问题,我们看下图:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-xUvgpono-1647523333398)(/upload/2021/09/image-d55d813bbcb544479109dd2248e90ff0.png)]

👉🏻从上图中我们可以看到,假设有一个恶意用户,他在0:59时,瞬间发送了100个请求,并且1:00又瞬间发送了100个请求,那么其实这个用户在 1秒里面,瞬间发送了200个请求。

🍦我们刚才规定的是1分钟最多100个请求(规划的吞吐量),也就是每秒钟最多1.7个请求,用户通过在时间窗口的重置节点处突发请求, 可以瞬间超过我们的速率限制。

用户有可能通过算法的这个漏洞,瞬间压垮我们的应用。🙇🏻‍♀️



漏桶限流✨

🍋漏桶算法限流的基本原理为:水(对应请求)从进水口进入到漏桶里,漏桶以一定的速度出水(请求放行),当水流入速度过大,桶内的总水量大于桶容量会直接溢出,请求被拒绝。
大致的漏桶限流规则如下:📍
(1)进水口(对应客户端请求)以任意速率流入进入漏桶。
(2)漏桶的容量是固定的,出水(放行)速率也是固定的。
(3)漏桶容量是不变的,如果处理速度太慢,桶内水量会超出了桶的容量,则后面流入的水滴会溢出,表示请求拒绝。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ohzhfhmz-1647523333399)(/upload/2021/09/image-afa56bce847f4d8b99e2dfd1eb3509aa.png)]

⭐漏桶算法其实很简单,可以粗略的认为就是注水漏水过程,往桶中以任意速率流入水,以一定速率流出水,当水超过桶容量(capacity)则丢弃,因为桶容量是不变的,保证了整体的速率。

以一定速率流出水,
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hFtmsnIH-1647523333399)(/upload/2021/09/image-c7d684d693f74fa5bf4077febb8fccbc.png)]

削峰📍: 有大量流量进入时,会发生溢出,从而限流保护服务可用

缓冲📍: 不至于直接请求到服务器, 缓冲压力

代码实现: 😎

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;

//漏斗限流
public class LeakBucketLimiter {

    //桶的大小
    private static long capacity = 10;
    //流出速率,每秒两个
    private static long rate = 2;
    //开始时间
    private static long startTime = System.currentTimeMillis();
    //桶中剩余的水
    private static AtomicLong water = new AtomicLong();

    /**
     * true 代表放行,请求可已通过
     * false 代表限制,不让请求通过
     */
    public synchronized static boolean tryAcquire() {
        //如果桶的余量问0,直接放行
        if (water.get() == 0) {
            startTime = System.currentTimeMillis();
            water.set(1);
            return true;
        }
        //计算从当前时间到开始时间流出的水,和现在桶中剩余的水
        //桶中剩余的水
        water.set(water.get() - (System.currentTimeMillis() - startTime) / 1000 * rate);
        //防止出现<0的情况
        water.set(Math.max(0, water.get()));
        //设置新的开始时间
        startTime += (System.currentTimeMillis() - startTime) / 1000 * 1000;
        //如果当前水小于容量,表示可以放行
        if (water.get() < capacity) {
            water.incrementAndGet();
            return true;
        } else {
            return false;
        }
    }


    // 测试
    public static void main(String[] args) {

        //线程池,用于多线程模拟测试
        ExecutorService pool = Executors.newFixedThreadPool(10);
        // 被限制的次数
        AtomicInteger limited = new AtomicInteger(0);
        // 线程数
        final int threads = 2;
        // 每条线程的执行轮数
        final int turns = 20;
        // 同步器
        CountDownLatch countDownLatch = new CountDownLatch(threads);
        long start = System.currentTimeMillis();
        for (int i = 0; i < threads; i++) {
            pool.submit(() ->
            {
                try {

                    for (int j = 0; j < turns; j++) {

                        boolean flag = tryAcquire();
                        if (!flag) {
                            // 被限制的次数累积
                            limited.getAndIncrement();
                        }
                        Thread.sleep(200);
                    }

                } catch (Exception e) {
                    e.printStackTrace();
                }
                //等待所有线程结束
                countDownLatch.countDown();
            });
        }
        try {
            countDownLatch.await();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        float time = (System.currentTimeMillis() - start) / 1000F;
        //输出统计结果
        System.out.println("限制的次数为:" + limited.get() +
                ",通过的次数为:" + (threads * turns - limited.get()));
        System.out.println("限制的比例为:" + (float) limited.get() / (float) (threads * turns));
        System.out.println("运行的时长为:" + time + "s");
    }

}

漏桶的不足: 🤷‍♀️
漏桶的出水速度固定,也就是请求放行速度是固定的。
漏桶出口的速度固定,不能灵活的应对后端能力提升。比如,通过动态扩容,后端流量从1000QPS提升到1WQPS,漏桶没有办法。


令牌桶限流✨✨✨

🍬令牌桶算法中新请求到来时会从桶里拿走一个令牌,如果桶内没有令牌可拿,就拒绝服务。 当然,令牌的数量也是有上限的。令牌的数量与时间和发放速率强相关,时间流逝的时间越长,会不断往桶里加入越多的令牌,如果令牌发放的速度比申请速度快,令牌桶会放满令牌,直到令牌占满整个令牌桶。

令牌桶限流大致的规则如下:🙇🏻‍♀️
(1)进水口按照某个速度,向桶中放入令牌。
(2)令牌的容量是固定的,但是放行的速度不是固定的,只要桶中还有剩余令牌,一旦请求过来就能申请成功,然后放行。
(3)如果令牌的发放速度,慢于请求到来速度,桶内就无牌可领,请求就会被拒绝。

总之,令牌的发送速率可以设置,从而可以对突发的出口流量进行有效的应对。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-OlS9VCnB-1647523333401)(/upload/2021/09/image-f5b402eae3b2409c8939b34d8be41f9c.png)]

代码实现: 😎

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;

//令牌桶
public class TokenBucketLimiter {
    //桶的容量
    private static long capacity = 10;
    //放入令牌的速率,每秒2个
    private static long rate = 2;
    //上次放置令牌的时间
    private static long lastTime = System.currentTimeMillis();
    //桶中令牌的余量
    private static AtomicLong tokenNum = new AtomicLong();

    /**
     * true 代表放行,请求可已通过
     * false 代表限制,不让请求通过
     */
    public synchronized static boolean tryAcquire() {
        //更新桶中剩余令牌的数量
        long now = System.currentTimeMillis();
        tokenNum.addAndGet((now - lastTime) / 1000 * rate);
        tokenNum.set(Math.min(capacity, tokenNum.get()));
        //更新时间
        lastTime += (now - lastTime) / 1000 * 1000;
        //桶中还有令牌就放行
        if (tokenNum.get() > 0) {
            tokenNum.decrementAndGet();
            return true;
        } else {
            return false;
        }
    }


    //测试
    public static void main(String[] args) {

        //线程池,用于多线程模拟测试
        ExecutorService pool = Executors.newFixedThreadPool(10);
        // 被限制的次数
        AtomicInteger limited = new AtomicInteger(0);
        // 线程数
        final int threads = 2;
        // 每条线程的执行轮数
        final int turns = 20;
        // 同步器
        CountDownLatch countDownLatch = new CountDownLatch(threads);
        long start = System.currentTimeMillis();
        for (int i = 0; i < threads; i++) {
            pool.submit(() ->
            {
                try {

                    for (int j = 0; j < turns; j++) {

                        boolean flag = tryAcquire();
                        if (!flag) {
                            // 被限制的次数累积
                            limited.getAndIncrement();
                        }
                        Thread.sleep(200);
                    }

                } catch (Exception e) {
                    e.printStackTrace();
                }
                //等待所有线程结束
                countDownLatch.countDown();
            });
        }
        try {
            countDownLatch.await();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        float time = (System.currentTimeMillis() - start) / 1000F;
        //输出统计结果
        System.out.println("限制的次数为:" + limited.get() +
                ",通过的次数为:" + (threads * turns - limited.get()));
        System.out.println("限制的比例为:" + (float) limited.get() / (float) (threads * turns));
        System.out.println("运行的时长为:" + time + "s");
    }

}

令牌桶的好处: 🚀🚀🚀
令牌桶的好处之一就是可以方便地应对 突发出口流量(后端能力的提升)。

比如,可以改变令牌的发放速度,算法能按照新的发送速率调大令牌的发放数量,使得出口突发流量能被处理。

目录
相关文章
|
2月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
87 4
|
1月前
|
算法 容器
令牌桶算法原理及实现,图文详解
本文介绍令牌桶算法,一种常用的限流策略,通过恒定速率放入令牌,控制高并发场景下的流量,确保系统稳定运行。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
令牌桶算法原理及实现,图文详解
|
22天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
54 1
|
2月前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
2月前
|
算法
PID算法原理分析
【10月更文挑战第12天】PID控制方法从提出至今已有百余年历史,其由于结构简单、易于实现、鲁棒性好、可靠性高等特点,在机电、冶金、机械、化工等行业中应用广泛。
|
3月前
|
算法 搜索推荐 开发者
别再让复杂度拖你后腿!Python 算法设计与分析实战,教你如何精准评估与优化!
在 Python 编程中,算法的性能至关重要。本文将带您深入了解算法复杂度的概念,包括时间复杂度和空间复杂度。通过具体的例子,如冒泡排序算法 (`O(n^2)` 时间复杂度,`O(1)` 空间复杂度),我们将展示如何评估算法的性能。同时,我们还会介绍如何优化算法,例如使用 Python 的内置函数 `max` 来提高查找最大值的效率,或利用哈希表将查找时间从 `O(n)` 降至 `O(1)`。此外,还将介绍使用 `timeit` 模块等工具来评估算法性能的方法。通过不断实践,您将能更高效地优化 Python 程序。
70 4
|
3月前
|
算法 程序员 Python
程序员必看!Python复杂度分析全攻略,让你的算法设计既快又省内存!
在编程领域,Python以简洁的语法和强大的库支持成为众多程序员的首选语言。然而,性能优化仍是挑战。本文将带你深入了解Python算法的复杂度分析,从时间与空间复杂度入手,分享四大最佳实践:选择合适算法、优化实现、利用Python特性减少空间消耗及定期评估调整,助你写出高效且节省内存的代码,轻松应对各种编程挑战。
60 1
|
2月前
|
算法
PID算法原理分析及优化
【10月更文挑战第6天】PID控制方法从提出至今已有百余年历史,其由于结构简单、易于实现、鲁棒性好、可靠性高等特点,在机电、冶金、机械、化工等行业中应用广泛。
|
3月前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
193 19
|
3月前
|
机器学习/深度学习 存储 人工智能
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。
56 0
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计