【数据结构与算法分析】0基础带你学数据结构与算法分析09--线索二叉树 (TBT)

简介: 笔记

如果一棵二叉树,所有原本为空的右孩子改为指向该结点的中序遍历的后继,所有原本为空的左孩子改为指向该结点的中序遍历的前驱,那么修改后的二叉树被称为 线索二叉树 (Threaded binary tree, TBT)。指向前驱、后继的指针被称为线索,对二叉树以某种遍历顺序进行扫描并为每个结点添加线索的过程称为二叉树的 线索化 ,进行线索化的目的是为了加快查找二叉树中某节点的前驱和后继的速度。

30.png

TBT 能线性地遍历二叉树,从而比递归的中序遍历更快。使用 TBT 也能够方便的找到一个结点的父结点,这比显式地使用父结点指针或者栈效率更高。这在栈空间有限,或者无法使用存储父节点的栈时很有作用。


TBT 的存储结构


如果一棵二叉树线索化之后,需要分辨哪些是线索哪些是边,因此我们不得不修改数据结构,使得有 field 来指示该结点的左或右孩子是否是线索。

32.png

该节剩下内容将作为扩展部分,可以进行选择性阅览。


我们改写为代码,由于 tag 实际上至于要 1 bit 就能指示线索,这时候 C / C++ 的优势就体现出来了,我们可以通过 位域 限制 tag 的大小,并将两个 tag 合并在 1 Byte 上来减少结构体空洞带来的内存浪费。


// 假设运行在 UNIX-like 64 bit OS 之上
template <class Element>
struct ThreadedBinaryTreeNode {
  Element data; // 占用 ?? byte
  // 产生 ?? bit 空洞
  int ltag : 1;
  int rtag : 1;
  // 产生 62 bit 空洞
  ThreadedBinaryTreeNode* left;   // 占用 8 byte
  // 如果 rtag 在这里定义,数据结构大小将增加 8 byte,其中包含 63 bit 的空洞
  ThreadedBinaryTreeNode* right;  // 占用 8 byte
};

在之前的内容中,所有代码尽量都避免 C / C++ 的一些深度的语言特性,来避免读者因为编程语言的特性而带来的困扰。但是下面这个例子,将展示 C / C++ 因为其底层、灵活而展示出的强大。


在 LP64 模型下指针大小为 64 bit,从堆上分配来的内存的地址,起始地址能够被其最宽的成员大小整除。那么含有指针的 TreadedBinaryTreeNode 在分配时其地址可以被 8 byte 整除,这是什么概念的,就是其地址的 低 3 bit 一定为 0 。我们可以充分利用这 3 bit,在不改变二叉树结点结构的情况下,辨别该结点是否是线索。如此整个结构体大小缩小了 8 byte。其实这个技巧在很多 C 代码中都有使用,甚至你可以考虑将结构体空洞废物利用起来,或者 C 的宏编程,这些 奇技淫巧 威力强大但降低了代码的可读性。


使用最低 3 bit 存储状态,那么我们在使用时就不能直接使用指针了,那么下列函数可能会对你使用这 3 bit 有帮助。


enum NodeStatus {
  LINK,
  THREAD,
};
constexpr uintptr_t HIDE_BIT = 3;
inline BinaryTreeBaseNode* get_node(BinaryTreeBaseNode* node) {
  return reinterpret_cast<BinaryTreeBaseNode*>(reinterpret_cast<uintptr_t>(node) & ~HIDE_BIT);
}
inline BinaryTreeBaseNode* get_left(BinaryTreeBaseNode* node) {
  return get_node(get_node(node)->left);
}
inline BinaryTreeBaseNode* get_right(BinaryTreeBaseNode* node) {
  return get_node(get_node(node)->right);
}
inline int get_status(BinaryTreeBaseNode* node) {
  return reinterpret_cast<uintptr_t>(node) & HIDE_BIT;
}
inline void set_left_link(BinaryTreeBaseNode* node, BinaryTreeBaseNode* left) {
  node->left = left;
}
inline void set_left_thread(BinaryTreeBaseNode* node, BinaryTreeBaseNode* left) {
  node->left = reinterpret_cast<BinaryTreeBaseNode*>(reinterpret_cast<uintptr_t>(left) | NodeStatus::THREAD);
}
inline void set_right_link(BinaryTreeBaseNode* node, BinaryTreeBaseNode* right) {
  node->right = right;
}
inline void set_right_thread(BinaryTreeBaseNode* node, BinaryTreeBaseNode* right) {
  node->right = reinterpret_cast<BinaryTreeBaseNode*>(reinterpret_cast<uintptr_t>(right) | NodeStatus::THREAD);
}
inline bool is_thread(BinaryTreeBaseNode* node) {
  return get_status(node) == NodeStatus::THREAD;
}


线索化


线索化时需要记录结点的前驱,如果你仔细观察 Morris Traversal,你可能会发现, Morris Traversal 是在构建一部分线索二叉树。


template <class Element>
void inorder_threading(ThreadedBinaryTreeNode<Element>* root) {
  auto curr = root, prev = root;
  while (curr != nullptr) {
    if (curr->left == nullptr) {
      curr->left = prev;
      curr->ltag = NodeStatus::THREAD;
      prev = curr;
      goto RIGHTING;
    }
    prev = curr->left;
    while (prev->right != nullptr && prev->right != curr) {
      prev = prev->right;
    }
    if (prev->right == nullptr) {
      prev->right = curr;
      prev->rtag = NodeStatus::THREAD;
      curr = curr->left;
      continue;
    }
    prev = prev->right;
 RIGHTING:
    curr = curr->right;
  }
  // 由于 root 的后继的左线索指向不正确,需要对其进行修正
  if (root->right != nullptr) {
    curr = root->right;
    while (curr->ltag == NodeStatus::LINK) {
      curr = curr->left;
    }
    curr->left = root;
    curr->ltag = NodeStatus::THREAD;
  }
  // 由于中序遍历第一个结点的左线索指向不正确,将其置空。其最后一个结点同样也是置空的
  curr = root;
  while (curr->ltag == NodeStatus::LINK) {
    curr = curr->left;
  }
  curr->left = nullptr;
  curr->ltag = NodeStatus::LINK;
}


相关文章
|
1月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
70 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
12天前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
15天前
|
存储 缓存 算法
如何提高二叉树遍历算法的效率?
选择合适的遍历算法,如按层次遍历树时使用广度优先搜索(BFS),中序遍历二叉搜索树以获得有序序列。优化数据结构,如使用线索二叉树减少空指针判断,自定义节点类增加辅助信息。利用递归与非递归的特点,避免栈溢出问题。多线程并行遍历提高速度,注意线程安全。缓存中间结果,避免重复计算。预先计算并存储信息,提高遍历效率。综合运用这些方法,提高二叉树遍历算法的效率。
38 5
|
19天前
|
C语言
【数据结构】二叉树(c语言)(附源码)
本文介绍了如何使用链式结构实现二叉树的基本功能,包括前序、中序、后序和层序遍历,统计节点个数和树的高度,查找节点,判断是否为完全二叉树,以及销毁二叉树。通过手动创建一棵二叉树,详细讲解了每个功能的实现方法和代码示例,帮助读者深入理解递归和数据结构的应用。
70 8
|
18天前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
24 0
|
1月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
23 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
1月前
|
存储 算法
探索数据结构:分支的世界之二叉树与堆
探索数据结构:分支的世界之二叉树与堆
|
20天前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
103 9
|
11天前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
20 1
|
14天前
|
存储 算法 Java
数据结构的栈
栈作为一种简单而高效的数据结构,在计算机科学和软件开发中有着广泛的应用。通过合理地使用栈,可以有效地解决许多与数据存储和操作相关的问题。
下一篇
无影云桌面