操作系统学习笔记】(四)内存管理(1)

简介: 本文是个人学习《现代操作系统》一书后的笔记,本文重点总结内存管理和置换算法两部分。
本文首发于稀土掘金。该平台的作者 逐光而行 也是本人。

本文是个人学习《现代操作系统》一书后的笔记,本文重点总结内存管理和置换算法两部分。

内存管理

理想的存储器(暂无法实现):私有的、容量无限大的、速度无限快的、永久性的。

现实理念:分层存储器体系

管理分层存储器体系的部分称为存储管理器。

无存储器抽象

  • 这种系统中实现并行的一种方法是使用多线程进行编程。

未被广泛使用的原因:线程无法实现同一时间运行没有关联的程序。

  • 借助特殊硬件的帮助(参考IBM360的早期模型)

存储器抽象之一:地址空间

地址空间是一个进程可用于寻址内存的一套地址集合。

要使多个应用程序同时处于内存中且不相互影响,需要解决两个问题:保护和重定向

基址寄存器和界限寄存器

  • 想达成的目标:给每个程序一个自己独有的地址空间
  • 解决思路:动态重定位:简单把每个进程的地址空间映射到物理内存的不同部分。
  • 解决方法:给每个CPU配置两个特殊硬件寄存器。

处理内存超载

  • 交换技术

把一个进程完整调入内存,使该进程运行一段时间,然后把它存回磁盘。

- 内存紧缩:将所有进程尽可能向下移动,将内存交换产生的小 空闲区 合成一大块。
(注:通常不进行,因为很耗CPU时间)
  • 虚拟内存

空闲内存管理

使用位图

(一个位表示一块空间的情况,个人理解类似于嵌入式中的bit-band)

使用链表

维护一个记录已分配内存段和空闲内存段对的链表。

一些适配算法:

  • 首次适配算法
  • 下次适配算法

记录上次结束的位置,下次从该位置开始搜

  • 最佳适配算法

搜索整个链表到结束,找出 最小 空闲区

  • 最差适配算法

最大

  • 快速适配算法

为常用大小的空闲区维护单独的链表

虚拟内存

思想:每个程序拥有自己的地址空间,该空间被分割为很多块,称为page,每个page有连续的地址范围,并被映射到物理内存。

  • 边界如何处理:当程序引用了一部分不在物理内存中的地址空间时,由操作系统将缺失的部分装入物理内存并重新执行失败的指令。

加速分页进程

提供一个小型硬件设备(或通过软件实现),将虚拟地址直接映射到物理地址,而不访问页表。

(我记得6.s081的lab3就是在实现这个),该设备称为转换检测缓冲区(TLB)

针对大内存的页表

  • 多级页表
  • 倒排页表

页面置换算法

最优的情况(无法实现)

置换标记最大的页面。把因需要调入这个页面而发生的缺页中断推迟到将来,越久越好。

NRU(最近未使用)

LRU的近似

FIFO(先进先出)

队列

可能抛弃重要页面

第二次机会页面置换算法

对FIFO的改进,检查最老页面的R位,若为0;置换;为1,则清0并将其放至最后。(给它第二次机会)

时钟页面置换算法

对二次机会算法的改进,将页面保存在环形链表中,修改时不需要频繁移动链表,只需要将指针前移。

现实

LRU(least recently used)

两种方法:

  • 软件法:在内存中维护一个所有页面的链表。最近最少使用的在表尾。
  • 硬件法: 计数器

优秀但难实现

NFU(not frequently used)

LRU近似,相似程度比NRU大

老化算法

LRU近似,相似程度比NFU大

工作集页面置换算法

存在背景:大多数程序并不是均匀访问其地址空间的

  • 工作集(Denning):一个进程当前使用的页面的集合称为它的工作集。
  • 颠簸(Denning):若每执行几条指令就发生一次缺页中断,就称程序发生颠簸。
  • 工作集模型(Denning):

多道程序设计系统中,经常会把进城转移到磁盘上(从内存中移走所有页面)。不少分页系统会设法跟踪进程的工作集,以确保在让进程运行之前,其工作集就已在内存中。这种预先装入工作集的方法也成为了预先调页(prepaging)

实现开销大

工作集时钟页面置换算法(在原有基础上加个环形)

挺好的

相关文章
|
1天前
|
算法 安全 UED
探索操作系统的内核空间:虚拟内存管理
【7月更文挑战第50天】 在现代操作系统中,虚拟内存管理是核心功能之一,它允许操作系统高效地使用物理内存,并为应用程序提供独立的地址空间。本文将深入探讨操作系统虚拟内存管理的机制,包括分页、分段以及内存交换等关键技术,并分析它们如何共同作用以实现内存的有效管理和保护。通过理解这些原理,读者可以更好地把握操作系统的内部工作原理及其对应用程序性能的影响。
|
14天前
|
存储 算法 安全
深入剖析操作系统的内存管理机制
在数字世界的构建中,操作系统扮演着至关重要的角色。本文将探讨操作系统中的内存管理机制,揭示其背后的技术原理和设计哲学。从内存分配策略到虚拟内存的实现,再到内存保护和回收机制,我们将一探究竟,解析操作系统如何高效、安全地管理宝贵的内存资源。
|
15天前
|
算法 程序员
理解操作系统内存管理:页面置换算法全解析
大家好,我是小米,热爱分享技术的大哥哥!今天聊的是操作系统中的页面置换算法。它解决的是内存满载时,如何选择合适的页面移出以腾出空间的问题。主要有三种算法:FIFO(先进先出),简单但性能不佳;LRU(最近最久未使用),考虑时间局部性,性能较好但实现较复杂;OPT(最佳置换),理论上最优但无法实际应用。这些算法各有千秋,在实际应用中需根据场景选择最合适的方案。希望这能帮大家更好地理解内存管理的核心机制!
31 2
|
18天前
|
分布式计算 算法 内存技术
深入理解操作系统的内存管理机制
【7月更文挑战第32天】 在现代计算机系统中,操作系统扮演着至关重要的角色,它负责协调和管理整个系统的资源。其中,内存管理作为操作系统的核心功能之一,其效率和稳定性直接影响到系统的整体性能。本文旨在探讨操作系统中内存管理的基本原理、关键技术以及面临的挑战,为读者提供一个全面了解内存管理机制的视角。通过分析不同的内存分配策略、分页与分段机制以及虚拟内存技术,我们揭示了操作系统如何优化内存使用,保证多任务环境下的数据完整性和安全性。
|
20天前
|
Cloud Native Devops 数据库
云原生架构:未来软件开发的引擎深入理解操作系统的虚拟内存管理
【7月更文挑战第30天】在这篇文章中,我们将深入探讨云原生架构的概念,以及它如何改变软件开发的世界。我们将从云原生的基本概念开始,然后深入到它的关键技术和实践,最后讨论它对软件开发的未来影响。无论你是软件开发者,还是IT专业人士,这篇文章都将为你提供深入理解和掌握云原生架构的重要信息。 【7月更文挑战第30天】在数字世界的构建中,虚拟内存是操作系统不可或缺的一环。本文将探索虚拟内存的核心概念、工作机制及其对现代计算环境的重要性,同时揭示其背后的技术细节和面临的挑战。
17 3
|
20天前
|
监控 算法 Java
探索现代操作系统的内存管理机制
【7月更文挑战第31天】本文深入探讨了操作系统中至关重要的内存管理功能,包括虚拟内存、分页、分段以及内存分配策略等。文章旨在解释这些复杂概念背后的原理,并展示它们如何共同作用于提升系统性能和资源利用效率。我们将从内存管理的基础知识出发,逐步过渡到高级话题,如内存泄漏检测与垃圾回收机制,为读者提供全面而深入的理解。
35 0
|
21天前
|
存储 缓存 数据处理
操作系统中的内存管理优化策略
【7月更文挑战第30天】在计算机科学领域,内存管理是操作系统设计中的核心问题之一。有效的内存管理不仅能够提升系统性能,还能确保程序的高效运行。本文将探讨几种先进的内存管理技术,包括分页机制、虚拟内存、缓存策略以及最新的内存压缩技术。通过深入分析这些技术的实现原理与应用效果,本文旨在为读者提供一套系统的内存管理优化策略,帮助开发者和系统管理员更好地理解和应对内存资源的挑战。
21 0
|
21天前
|
缓存 监控 安全
探索Linux操作系统的内存管理机制
在计算机科学的世界中,内存管理是操作系统核心功能之一,它直接影响系统的性能和稳定性。Linux操作系统以其高效的内存管理而闻名,其设计哲学和技术实现为开发者和系统管理员提供了极大的灵活性和控制力。本文将深入探讨Linux内存管理的基本原理、关键技术以及面临的挑战,同时通过实际案例分析,展示如何优化内存使用,提升系统性能。
|
22天前
|
存储 Linux Windows
操作系统中的内存管理:从原理到实践
内存管理是操作系统中的核心功能,它直接影响着系统的性能和稳定性。本文将深入探讨内存管理的基本原理、关键技术以及实际应用,帮助读者更好地理解内存管理在操作系统中的重要性。
|
1月前
|
安全 Linux 网络安全
部署07--远程连接Linux系统,利用FinalShell可以远程连接到我们的操作系统上
部署07--远程连接Linux系统,利用FinalShell可以远程连接到我们的操作系统上