codeforces1013——D. Chemical table(思维+转化+并查集)

简介: codeforces1013——D. Chemical table(思维+转化+并查集)

原题链接

题意:(from洛谷)

给你一个n*m的矩形,一开始有q个格子上被标记。对于任意两行两列,如果交汇的四个格子中有三个被标记,那么第4个会被自动标记。问你至少需要手动标记几个格子,使得整个矩形内的格子都被标记。

思路:

假设交汇的四个格子的坐标是(x1,y1),(x1,y2),(x2,y1),(x2,y2).

那么这四个点里有任意三个点被标记后,第四个也能够被标记,也就是说第四个点是(x1,y1),那么它能够被标记的条件就是x1和y1在一个连通块里.

也就是说,在一个连通块里的坐标构成的任意点都能够被标记,所以手动标记就只需要将这几个连通块连接起来,也就是连通块的数量-1.

连通块的话就用并查集维护,因为最多有n行,所以可以将列的标号记作i+n,这样行列之间不会产生冲突。

代码:

#pragma GCC optimize(3)
#pragma GCC optimize("Ofast","unroll-loops","omit-frame-pointer","inline")
#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ll,ll>PLL;
typedef pair<int,int>PII;
typedef pair<double,double>PDD;
#define I_int ll
inline ll read()
{
    ll x=0,f=1;
    char ch=getchar();
    while(ch<'0'||ch>'9')
    {
        if(ch=='-')f=-1;
        ch=getchar();
    }
    while(ch>='0'&&ch<='9')
    {
        x=x*10+ch-'0';
        ch=getchar();
    }
    return x*f;
}
char F[200];
inline void out(I_int x)
{
    if (x == 0) return (void) (putchar('0'));
    I_int tmp = x > 0 ? x : -x;
    if (x < 0) putchar('-');
    int cnt = 0;
    while (tmp > 0)
    {
        F[cnt++] = tmp % 10 + '0';
        tmp /= 10;
    }
    while (cnt > 0) putchar(F[--cnt]);
    //cout<<" ";
}
ll ksm(ll a,ll b,ll p)
{
    ll res=1;
    while(b)
    {
        if(b&1)res=res*a%p;
        a=a*a%p;
        b>>=1;
    }
    return res;
}
const ll inf = 0x3f3f3f3f3f3f3f3f;
const int maxn=1e6+7,mod=1e8;
const double PI = atan(1.0)*4;
const double eps=1e-6;
int root[maxn],n,m,q;
int Find(int x){
    if(x!=root[x]) root[x]=Find(root[x]);
    return root[x];
}
int main(){
    n=read(),m=read(),q=read();
    for(int i=1;i<=n+m;i++) root[i]=i;
    for(int i=1;i<=q;i++){
        int r=read(),c=read();
        c+=n;
        r=Find(r),c=Find(c);
        if(r!=c) root[r]=c;
    }
    int res=0;
    for(int i=1;i<=n+m;i++)
        if(Find(i)==i) res++;
    out(res-1);
    return 0;
}
目录
相关文章
|
5月前
|
存储 算法 数据挖掘
python5种算法模拟螺旋、分层填充、递归、迭代、分治实现螺旋矩阵ll【力扣题59】
python5种算法模拟螺旋、分层填充、递归、迭代、分治实现螺旋矩阵ll【力扣题59】
|
6月前
|
算法 测试技术 C语言
leecode算法题之数组
leecode算法题之数组
PTA-基础编程题目集(函数题)
PTA-基础编程题目集(函数题)
173 0
codeforces319——B. Psychos in a Line(思维+单调栈)
codeforces319——B. Psychos in a Line(思维+单调栈)
94 0
codeforces319——B. Psychos in a Line(思维+单调栈)
Codeforces1153——D. Serval and Rooted Tree(思维好题+dfs+贪心)
Codeforces1153——D. Serval and Rooted Tree(思维好题+dfs+贪心)
129 0
Codeforces1153——D. Serval and Rooted Tree(思维好题+dfs+贪心)
|
算法
【牛客刷题-算法】NC11 将升序数组转化为平衡二叉搜索树
【牛客刷题-算法】NC11 将升序数组转化为平衡二叉搜索树
105 0
【牛客刷题-算法】NC11 将升序数组转化为平衡二叉搜索树
|
人工智能
每天两道 CodeForces 构造/思维题 (day5)
每天两道 CodeForces 构造/思维题 (day5)
每天两道 CodeForces 构造/思维题 (day5)