Python学习笔记第四十一天(NumPy 位运算)

简介: Python学习笔记第四十一天讲解bitwise_and、bitwise_or、invert、left_shift、right_shift的用法。

Python学习笔记第四十一天

NumPy 位运算

NumPy "bitwise_" 开头的函数是位运算函数。

NumPy 位运算包括以下几个函数:

函数 描述
bitwise_and 对数组元素执行位与操作
bitwise_or 对数组元素执行位或操作
invert 按位取反
left_shift 向左移动二进制表示的位
right_shift 向右移动二进制表示的位

注:也可以使用 "&"、 "~"、 "|" 和 "^" 等操作符进行计算。

bitwise_and

bitwise_and() 函数对数组中整数的二进制形式执行位与运算。

# 实例 1
import numpy as np 
 
print ('13 和 17 的二进制形式:')
a,b = 13,17
print (bin(a), bin(b))
print ('\n')
 
print ('13 和 17 的位与:')
print (np.bitwise_and(13, 17))

输出结果为:

13 和 17 的二进制形式:
0b1101 0b10001


13 和 17 的位与:
1

以上实例可以用下表来说明:

1 1 0 1
AND
1 0 0 0 1
运算结果 0 0 0 0 1

位与操作运算规律如下:

A B AND
1 1 1
1 0 0
0 1 0
0 0 0

bitwise_or

bitwise_or()函数对数组中整数的二进制形式执行位或运算。

# 实例 2
import numpy as np 
 
a,b = 13,17 
print ('13 和 17 的二进制形式:')
print (bin(a), bin(b))
 
print ('13 和 17 的位或:')
print (np.bitwise_or(13, 17))

输出结果为:

13 和 17 的二进制形式:
0b1101 0b10001
13 和 17 的位或:
29

以上实例可以用下表来说明:

1 1 0 1
OR
1 0 0 0 1
运算结果 1 1 1 0 1

位或操作运算规律如下:

A B OR
1 1 1
1 0 1
0 1 1
0 0 0

invert

invert() 函数对数组中整数进行位取反运算,即 0 变成 1,1 变成 0。

对于有符号整数,取该二进制数的补码,然后 +1。二进制数,最高位为0表示正数,最高位为 1 表示负数。

看看 ~1 的计算步骤:

  • 将1(这里叫:原码)转二进制 = 00000001
  • 按位取反 = 11111110
  • 发现符号位(即最高位)为1(表示负数),将除符号位之外的其他数字取反 = 10000001
  • 末位加1取其补码 = 10000010
  • 转换回十进制 = -2
表达式 二进制值(2 的补数) 十进制值
5 00000000 00000000 00000000 0000010 5
~5 11111111 11111111 11111111 11111010 -6
# 实例 3
import numpy as np 
 
print ('13 的位反转,其中 ndarray 的 dtype 是 uint8:')
print (np.invert(np.array([13], dtype = np.uint8)))
print ('\n')
# 比较 13 和 242 的二进制表示,我们发现了位的反转
 
print ('13 的二进制表示:')
print (np.binary_repr(13, width = 8))
print ('\n')
 
print ('242 的二进制表示:')
print (np.binary_repr(242, width = 8))

输出结果为:

13 的位反转,其中 ndarray 的 dtype 是 uint8:
[242]


13 的二进制表示:
00001101


242 的二进制表示:
11110010

left_shift

left_shift() 函数将数组元素的二进制形式向左移动到指定位置,右侧附加相等数量的 0。

# 实例 4
import numpy as np 
 
print ('将 10 左移两位:')
print (np.left_shift(10,2))
print ('\n')
 
print ('10 的二进制表示:')
print (np.binary_repr(10, width = 8))
print ('\n')
 
print ('40 的二进制表示:')
print (np.binary_repr(40, width = 8))
#  '00001010' 中的两位移动到了左边,并在右边添加了两个 0。

输出结果为:

将 10 左移两位:
40


10 的二进制表示:
00001010


40 的二进制表示:
00101000

right_shift

right_shift() 函数将数组元素的二进制形式向右移动到指定位置,左侧附加相等数量的 0。

# 实例 6
import numpy as np 
 
print ('将 40 右移两位:')
print (np.right_shift(40,2))
print ('\n')
 
print ('40 的二进制表示:')
print (np.binary_repr(40, width = 8))
print ('\n')
 
print ('10 的二进制表示:')
print (np.binary_repr(10, width = 8))
#  '00001010' 中的两位移动到了右边,并在左边添加了两个 0。

输出结果为:

将 40 右移两位:
10


40 的二进制表示:
00101000


10 的二进制表示:
00001010

结束语

今天学习的是PythonNumPy 位运算学会了吗。 今天学习内容总结一下:

  1. bitwise_and
  2. bitwise_or
  3. invert
  4. left_shift
  5. right_shift
相关文章
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
47 2
|
2月前
|
网络协议 Java Linux
PyAV学习笔记(一):PyAV简介、安装、基础操作、python获取RTSP(海康)的各种时间戳(rtp、dts、pts)
本文介绍了PyAV库,它是FFmpeg的Python绑定,提供了底层库的全部功能和控制。文章详细讲解了PyAV的安装过程,包括在Windows、Linux和ARM平台上的安装步骤,以及安装中可能遇到的错误和解决方法。此外,还解释了时间戳的概念,包括RTP、NTP、PTS和DTS,并提供了Python代码示例,展示如何获取RTSP流中的各种时间戳。最后,文章还提供了一些附录,包括Python通过NTP同步获取时间的方法和使用PyAV访问网络视频流的技巧。
460 4
PyAV学习笔记(一):PyAV简介、安装、基础操作、python获取RTSP(海康)的各种时间戳(rtp、dts、pts)
|
2月前
|
Python
Socket学习笔记(二):python通过socket实现客户端到服务器端的图片传输
使用Python的socket库实现客户端到服务器端的图片传输,包括客户端和服务器端的代码实现,以及传输结果的展示。
173 3
Socket学习笔记(二):python通过socket实现客户端到服务器端的图片传输
|
2月前
|
JSON 数据格式 Python
Socket学习笔记(一):python通过socket实现客户端到服务器端的文件传输
本文介绍了如何使用Python的socket模块实现客户端到服务器端的文件传输,包括客户端发送文件信息和内容,服务器端接收并保存文件的完整过程。
184 1
Socket学习笔记(一):python通过socket实现客户端到服务器端的文件传输
|
1月前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
51 3
|
1月前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
77 5
|
1月前
|
存储 机器学习/深度学习 算法
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第26天】NumPy和SciPy是Python科学计算领域的两大核心库。NumPy提供高效的多维数组对象和丰富的数学函数,而SciPy则在此基础上提供了更多高级的科学计算功能,如数值积分、优化和统计等。两者结合使Python在科学计算中具有极高的效率和广泛的应用。
69 2
|
2月前
|
关系型数据库 MySQL 数据库
Mysql学习笔记(四):Python与Mysql交互--实现增删改查
如何使用Python与MySQL数据库进行交互,实现增删改查等基本操作的教程。
73 1
|
2月前
|
Ubuntu Linux Python
Ubuntu学习笔记(六):ubuntu切换Anaconda和系统自带Python
本文介绍了在Ubuntu系统中切换Anaconda和系统自带Python的方法。方法1涉及编辑~/.bashrc和/etc/profile文件,更新Anaconda的路径。方法2提供了详细的步骤指导,帮助用户在Anaconda和系统自带Python之间进行切换。
124 1
|
2月前
|
数据挖掘 索引 Python
Python数据分析篇--NumPy--进阶
Python数据分析篇--NumPy--进阶
22 0