Python学习笔记第三十五天(NumPy 切片和索引)

简介: Python学习笔记第三十五天讲解NumPy 切片和索引的用法。

Python学习笔记第三十五天

NumPy 切片和索引

ndarray对象的内容可以通过索引或切片来访问和修改,与 Python 中 list 的切片操作一样。

ndarray 数组可以基于 0 - n 的下标进行索引,切片对象可以通过内置的 slice 函数,并设置 start, stop 及 step 参数进行,从原数组中切割出一个新数组。

# 实例 1
import numpy as np
 
a = np.arange(10)
s = slice(2,7,2)   # 从索引 2 开始到索引 7 停止,间隔为2
print (a[s])

输出结果为:

[2  4  6]

以上实例中,我们首先通过 arange() 函数创建 ndarray 对象。 然后,分别设置起始,终止和步长的参数为 2,7 和 2。

我们也可以通过冒号分隔切片参数 start:stop:step 来进行切片操作:

# 实例 2
import numpy as np
 
a = np.arange(10)  
b = a[2:7:2]   # 从索引 2 开始到索引 7 停止,间隔为 2
print(b)

输出结果为:

[2  4  6]

冒号 : 的解释:如果只放置一个参数,如 [2],将返回与该索引相对应的单个元素。如果为 [2:],表示从该索引开始以后的所有项都将被提取。如果使用了两个参数,如 [2:7],那么则提取两个索引(不包括停止索引)之间的项。

# 实例 3
import numpy as np
 
a = np.arange(10)  # [0 1 2 3 4 5 6 7 8 9]
b = a[5] 
print(b)

输出结果为:

5
# 实例 4
import numpy as np
 
a = np.arange(10)
print(a[2:])

输出结果为:

[2  3  4  5  6  7  8  9]
# 实例 5 
import numpy as np
 
a = np.arange(10)  # [0 1 2 3 4 5 6 7 8 9]
print(a[2:5])

输出结果为:

[2  3  4]

多维数组同样适用上述索引提取方法:

# 实例 6
import numpy as np
 
a = np.array([[1,2,3],[3,4,5],[4,5,6]])
print(a)
# 从某个索引处开始切割
print('从数组索引 a[1:] 处开始切割')
print(a[1:])

输出结果为:

[[1 2 3]
 [3 4 5]
 [4 5 6]]
从数组索引 a[1:] 处开始切割
[[3 4 5]
 [4 5 6]]

切片还可以包括省略号 …,来使选择元组的长度与数组的维度相同。 如果在行位置使用省略号,它将返回包含行中元素的 ndarray。

# 实例 7
import numpy as np
 
a = np.array([[1,2,3],[3,4,5],[4,5,6]])  
print (a[...,1])   # 第2列元素
print (a[1,...])   # 第2行元素
print (a[...,1:])  # 第2列及剩下的所有元素

输出结果为:

[2 4 5]
[3 4 5]
[[2 3]
 [4 5]
 [5 6]]

结束语

今天学习的是PythonNumPy 从数值范围创建数组学会了吗。 今天学习内容总结一下:

  1. NumPy 切片和索引
相关文章
|
4月前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
81 2
|
4月前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
197 5
|
4月前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
131 3
|
4月前
|
存储 机器学习/深度学习 算法
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第26天】NumPy和SciPy是Python科学计算领域的两大核心库。NumPy提供高效的多维数组对象和丰富的数学函数,而SciPy则在此基础上提供了更多高级的科学计算功能,如数值积分、优化和统计等。两者结合使Python在科学计算中具有极高的效率和广泛的应用。
146 2
|
5月前
|
关系型数据库 MySQL 数据库
Mysql学习笔记(四):Python与Mysql交互--实现增删改查
如何使用Python与MySQL数据库进行交互,实现增删改查等基本操作的教程。
104 1
|
5月前
|
Ubuntu Linux Python
Ubuntu学习笔记(六):ubuntu切换Anaconda和系统自带Python
本文介绍了在Ubuntu系统中切换Anaconda和系统自带Python的方法。方法1涉及编辑~/.bashrc和/etc/profile文件,更新Anaconda的路径。方法2提供了详细的步骤指导,帮助用户在Anaconda和系统自带Python之间进行切换。
252 1
|
5月前
|
数据挖掘 索引 Python
Python数据分析篇--NumPy--进阶
Python数据分析篇--NumPy--进阶
44 0
|
5月前
|
数据挖掘 索引 Python
Python数据分析篇--NumPy--入门
Python数据分析篇--NumPy--入门
79 0
|
6月前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
158 1
|
7月前
|
机器学习/深度学习 数据处理 计算机视觉
NumPy实践宝典:Python高手教你如何轻松玩转数据处理!
【8月更文挑战第22天】NumPy是Python科学计算的核心库,专长于大型数组与矩阵运算,并提供了丰富的数学函数。首先需安装NumPy (`pip install numpy`)。之后可通过创建数组、索引与切片、执行数学与逻辑运算、变换数组形状及类型、计算统计量和进行矩阵运算等操作来实践学习。NumPy的应用范围广泛,从基础的数据处理到图像处理都能胜任,是数据科学领域的必备工具。
87 0

热门文章

最新文章