CodeForces-Kuroni and Impossible Calculation(思维+鸽巢原理)

简介: CodeForces-Kuroni and Impossible Calculation(思维+鸽巢原理)

熬过最苦的日子 做最酷的自己

又是一场深夜掉分场(默默擦泪。jpg)

原题链接

Kuroni and Impossible Calculation

time limit per test1 second

memory limit per test256 megabytes

inputstandard input

outputstandard output


To become the king of Codeforces, Kuroni has to solve the following problem.


He is given n numbers a1,a2,…,an. Help Kuroni to calculate ∏1≤i<j≤n|ai−aj|. As result can be very big, output it modulo m.


If you are not familiar with short notation, ∏1≤i<j≤n|ai−aj| is equal to |a1−a2|⋅|a1−a3|⋅ … ⋅|a1−an|⋅|a2−a3|⋅|a2−a4|⋅ … ⋅|a2−an|⋅ … ⋅|an−1−an|. In other words, this is the product of |ai−aj| for all 1≤i<j≤n.


Input

The first line contains two integers n, m (2≤n≤2⋅105, 1≤m≤1000) — number of numbers and modulo.


The second line contains n integers a1,a2,…,an (0≤ai≤109).


Output

Output the single number — ∏1≤i<j≤n|ai−aj|modm.


Examples

inputCopy

2 10

8 5

outputCopy

3

inputCopy

3 12

1 4 5

outputCopy

0

inputCopy

3 7

1 4 9

outputCopy

1

Note

In the first sample, |8−5|=3≡3mod10.


In the second sample, |1−4|⋅|1−5|⋅|4−5|=3⋅4⋅1=12≡0mod12.


In the third sample, |1−4|⋅|1−9|⋅|4−9|=3⋅8⋅5=120≡1mod7.


思路: 一开始想的只有暴力暴力再暴力,看了一眼数据范围甚至还想用树状数组来写一波。后来听群里大佬说的思路。

假设有m+1个数,一定有两个数%m相等,相减后一定为0.

当n>m时,一定有两个数%m相等,那么相减后一定为0.所以n>m时答案为0.

当n<=m时,m最大是1000,暴力枚举一波就可以了

跟鸽巢原理差不多吧~ 传送门


代码:

//#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define I_int ll
inline ll read()
{
    ll x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
char F[200];
inline void out(I_int x) {
    if (x == 0) return (void) (putchar('0'));
    I_int tmp = x > 0 ? x : -x;
    if (x < 0) putchar('-');
    int cnt = 0;
    while (tmp > 0) {
        F[cnt++] = tmp % 10 + '0';
        tmp /= 10;
    }
    while (cnt > 0) putchar(F[--cnt]);
    //cout<<" ";
}
const int maxn=1e6+7;
ll a[maxn];
int main(){
       ll n,m;
    n=read();m=read();
    for(ll i=1;i<=n;i++) a[i]=read();
    if(n>m){
        puts("0");
        return 0;
    }
    ll res=1;
    for(ll i=1;i<=n;i++)
        for(int j=i+1;j<=n;j++)
            res=res*abs(a[j]-a[i])%m;
    printf("%lld\n",res);
    return 0;
}

越来越喜欢cf了~

目录
相关文章
|
3月前
|
机器学习/深度学习 数据可视化 算法
2023年美赛C题 预测Wordle结果Predicting Wordle Results这题太简单了吧
本文提供了2023年美赛C题"预测Wordle结果"的详细建模方案、Python代码实现、数据和图片,包括对Wordle游戏规则的理解、数据分析、模型构建和结果预测,以及如何撰写给《纽约时报》字谜编辑的信件。
49 1
2023年美赛C题 预测Wordle结果Predicting Wordle Results这题太简单了吧
codeforces 339A.Helpful Maths B.Xenia and Ringroad 两水题
.题意就是把字符串里面的数字按增序排列,直接上代码。
39 0
Light oj 1080 - Binary Simulation(树状数组区间更新点查询)
有一字符串只包含0和1,然后又m组操作,I L R是将从L到R的字符进行翻转操作0变为1、1变为0,Q x表示询问第x的字符。
42 0
AtCoder Beginner Contest 214 D.Sum of Maximum Weights (思维 并查集)
AtCoder Beginner Contest 214 D.Sum of Maximum Weights (思维 并查集)
115 0
AtCoder Beginner Contest 223 D - Restricted Permutation(建图 思维 构造 拓扑排序)
AtCoder Beginner Contest 223 D - Restricted Permutation(建图 思维 构造 拓扑排序)
130 0
|
人工智能 BI
CodeForces - 1485D Multiples and Power Differences (构造+lcm)
CodeForces - 1485D Multiples and Power Differences (构造+lcm)
82 0
【欧拉计划第 5 题】最小公倍数 Smallest multiple
【欧拉计划第 5 题】最小公倍数 Smallest multiple
158 0
【欧拉计划第 5 题】最小公倍数 Smallest multiple