《大数据导论》——2.4节信息与通信技术

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

本节书摘来自华章社区《大数据导论》一书中的第2章,第2.4节信息与通信技术,作者瓦吉德·哈塔克(Wajid Khattak),保罗·布勒(Paul Buhler),更多章节内容可以访问云栖社区“华章社区”公众号查看

2.4 信息与通信技术
这一节考察了加快大数据在商业中应用的信息与通信技术,有以下的成果:
数据分析与数据科学
数字化
可负担技术与商用硬件
社交媒体
超连通社区与设备
云计算
2.4.1 数据分析与数据科学
企业正在不断收集、获取、存储、管理和处理不断增加的海量信息。这种现象之所以发生是因为想要找到新的洞察力,以实施更为高效的行动,使得管理过程能够具有前瞻性地把控业务,使得最高管理层能够更好地制定和达到他们的战略方案。最终,企业在寻找新的方法以获取竞争优势,因此对于能够抓取有意义信息的技术的需求在不断上升。计算方法、统计技术以及数据仓库已经能够携手合作,且也能分别运用各自独有的核心技术以完成大数据分析。这些领域实践上的成熟催生并促进了当代大数据解决方案、环境和平台所需求的核心功能。
2.4.2 数字化
对许多公司来说,数字媒体已经取代了物理媒体成为实际运用的交流与交付机制。数字产品的应用不仅节省了时间也节省了成本,数字产品的分布依赖于早已存在的、遍布各地的互联网基础设施的支持。当用户通过自身的数字产品与一项业务相连接时,便会产生能够收集辅助信息的机会。比方说,要求一位用户提供反馈,完成一份表单,或仅仅是提供一个钩子程序来展示一份相关广告并追踪它的点击率。收集辅助信息对业务来说十分重要,因为挖掘这个信息能够实现定制化的营销、自动推荐以及优化产品特征的发展。图2.4提供了一份关于数字化例子的视觉展示。


d109228cc55c3ce9518b436f7b232ef07c06a06e

2.4.3 开源技术与商用硬件
能够存储和处理各式大量信息的技术已经变得越来越经济。另外,大数据解决方案经常在商用硬件上利用开源软件,以进一步削减成本。商用硬件与开源软件的结合几乎终结了大企业过去由于拥有着大量的IT预算而对其他规模较小的竞争者们使用“烧钱”战略的优势。技术已经不再带来竞争优势,相反,它仅仅只是业务实施的平台。从商业的角度来看,能够利用开源技术与商用硬件来产生分析结果,并用它进一步优化业务的执行流程,才是通往竞争优势的大门。
商用硬件的流行使得大数据解决方案可以在不用大量资本投资的情况下在业务中获得应用。图2.5提供了一个在过去20年里数据存储价格跌幅的例子。


9d939b2b18a02de97166447c7816f20ac66fa49c

2.4.4 社交媒体
社交媒体的出现已经使得顾客们能够通过公开、公共的媒介,近乎实时地提交自己的反馈。这种转变已经使得各大公司在考虑他们战略规划中的服务和产品供给时,加入了顾客反馈的因素。因此,公司将与日俱增的、由顾客交互产生的大量数据储存在他们的顾客关系管理系统(CRM)内,这些数据来自社交媒体网站的顾客评论、抱怨和嘉奖。这些信息成就了大数据分析算法,使得它能够表达用户的想法,以之来提供更好的服务,增加销售量,促成目标营销,甚至是创造新的产品和服务。公司已经意识到了品牌形象塑造不再由内部营销活动所全权支配,相反,产品品牌和公司名誉是由公司和它的顾客共同创造。基于这个原因,各大公司对来自于社交媒体和其他外部信息源的公共信息集越来越感兴趣。
2.4.5 超连通社区与设备
因特网的广泛覆盖以及蜂窝与Wi-Fi网络的迅速普及,使得越来越多的人和他们的设备能够在虚拟社区中持续在线。伴着能够连通网络的传感器的普及,物联网的基础架构使得一大批智能联网设备成型。如图2.6所示,这反过来导致了可用数据流的大量增长。其中一些流是公共的,而另外一些则直接通往分析公司。举例来说,与采矿业中使用的重型设备有关的基于性能的管理合约能够激发预防和预测性维护的最佳性能,其目的是减少计划之外的故障检修的需要,且避免由之耗费的停工时间。而这需要对设备产生的传感器读数进行具体分析,来对那些可以通过提前安排维护服务而解决的问题进行早期检测。


b05ac5bca193631db3718b0a45e01c0563b5c6fe

2.4.6 云计算
云计算技术的进步已经使得这样的环境成型:通过预付费租赁模式提供高度可扩展性、按需分配的IT资源。公司可以利用这些环境所提供的基础设施、储存和处理能力来得到可扩展的大数据解决方案,以完成大规模处理任务。尽管公司在传统上被认为是由一个云标记来描述的公有云环境,但它们同时正利用云管理软件来创建私有云,以通过虚拟化来更加有效地利用它们现存的基础设施。不论发生何种情况,云的基于负载的动态扩展能力,可以创建出能够最大化有效利用信息通信技术资源的弹性分析环境。
图2.7的例子展示了如何利用云环境的扩展能力来执行大数据处理任务。可以通过租赁基于公有云的IT资源来大大减少大数据项目所需的先期投资。


4f08691e04c9f3439d80676d1d6eb2b1fe730c3b

如今已经在使用云计算的企业,对他们的大数据项目再次使用云计算是合理的,因为员工已经掌握了所需的云计算技能
输入信息已经存在于云中
使用云服务对于那些打算在可通过数据市场获得的数据集上进行分析的企业来说是极富逻辑性的,因为许多数据市场便将它们的数据集放在一个云环境中,比如Amazon S3。
总而言之,云计算能够为一份大数据解决方案提供三项必不可少的材料:外部数据集、可扩展性处理能力和大容量存储。

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
1月前
|
存储 人工智能 大数据
云栖2025|阿里云开源大数据发布新一代“湖流一体”数智平台及全栈技术升级
阿里云在云栖大会发布“湖流一体”数智平台,推出DLF-3.0全模态湖仓、实时计算Flink版升级及EMR系列新品,融合实时化、多模态、智能化技术,打造AI时代高效开放的数据底座,赋能企业数字化转型。
560 0
|
3月前
|
数据采集 人工智能 分布式计算
ODPS在AI时代的发展战略与技术演进分析报告
ODPS(现MaxCompute)历经十五年发展,从分布式计算平台演进为AI时代的数据基础设施,以超大规模处理、多模态融合与Data+AI协同为核心竞争力,支撑大模型训练与实时分析等前沿场景,助力企业实现数据驱动与智能化转型。
378 4
|
4月前
|
数据采集 搜索推荐 算法
大数据信息SEO优化系统软件
大数据信息SEO优化系统软件(V1.0)是公司基于“驱动企业价值持续增长”战略,针对企业网站、电商平台及内容营销场景深度定制的智能化搜索引擎优化解决方案。该软件以“提升搜索排名、精准引流获客”为核心目标,通过整合全网数据采集、智能关键词挖掘、内容质量分析、外链健康度监测等功能模块,为企业构建从数据洞察到策略落地的全链路SEO优化体系,助力品牌高效提升搜索引擎曝光度,实现从流量获取到商业转化的价值升级。
115 2
|
4月前
|
存储 分布式计算 Hadoop
Hadoop框架解析:大数据处理的核心技术
组件是对数据和方法的封装,从用户角度看是实现特定功能的独立黑盒子,能够有效完成任务。组件,也常被称作封装体,是对数据和方法的简洁封装形式。从用户的角度来看,它就像是一个实现了特定功能的黑盒子,具备输入和输出接口,能够独立完成某些任务。
|
1月前
|
数据可视化 大数据 关系型数据库
基于python大数据技术的医疗数据分析与研究
在数字化时代,医疗数据呈爆炸式增长,涵盖患者信息、检查指标、生活方式等。大数据技术助力疾病预测、资源优化与智慧医疗发展,结合Python、MySQL与B/S架构,推动医疗系统高效实现。
|
3月前
|
SQL 分布式计算 大数据
我与ODPS的十年技术共生之路
ODPS十年相伴,从初识的分布式计算到共生进化,突破架构边界,推动数据价值深挖。其湖仓一体、隐私计算与Serverless能力,助力企业降本增效,赋能政务与商业场景,成为数字化转型的“数字神经系统”。
|
3月前
|
存储 人工智能 算法
Java 大视界 -- Java 大数据在智能医疗影像数据压缩与传输优化中的技术应用(227)
本文探讨 Java 大数据在智能医疗影像压缩与传输中的关键技术应用,分析其如何解决医疗影像数据存储、传输与压缩三大难题,并结合实际案例展示技术落地效果。
|
3月前
|
机器学习/深度学习 算法 Java
Java 大视界 -- Java 大数据在智能物流运输车辆智能调度与路径优化中的技术实现(218)
本文深入探讨了Java大数据技术在智能物流运输中车辆调度与路径优化的应用。通过遗传算法实现车辆资源的智能调度,结合实时路况数据和强化学习算法进行动态路径优化,有效提升了物流效率与客户满意度。以京东物流和顺丰速运的实际案例为支撑,展示了Java大数据在解决行业痛点问题中的强大能力,为物流行业的智能化转型提供了切实可行的技术方案。
|
4月前
|
数据采集 自然语言处理 分布式计算
大数据岗位技能需求挖掘:Python爬虫与NLP技术结合
大数据岗位技能需求挖掘:Python爬虫与NLP技术结合
|
4月前
|
存储 分布式计算 算法
Java 大视界 -- Java 大数据在智能教育在线考试监考与作弊检测中的技术创新(193)
本文探讨了Java大数据技术在智能教育在线考试监考与作弊检测中的创新应用。随着在线考试的普及,作弊问题日益突出,传统监考方式难以应对。通过Java大数据技术,可实现考生行为分析、图像识别等多维度监控,提升作弊检测的准确性与效率。结合Hadoop与Spark等技术,系统能实时处理海量数据,构建智能监考体系,保障考试公平性,推动教育评价体系的数字化转型。