@[TOC]
前言
本文介绍通过
编程
实现《离散数学》中的==合式公式==的判断。
合式公式
- 很明显用递归去模拟实现判断过程相对容易。(当然利用==栈==,循环实现也行,毕竟递归是发生在==栈区==(函数栈帧),另外递归解决时要处理的细节就很多了,循环会更麻烦)。
- 由合式公式的定义,很明显
原子公式
就是我们递归的==出口==,确定了出口,剩下就是怎么通过递归算法,递推到这个出口
约定
联结词 | 代替 | |
---|---|---|
非 | ! | |
合取(^) | *(数量积) | |
析取(V) | +(数量和) | |
蕴含(->) | > | |
等价 | = |
思路
删除否定联结词
思路用一个辅助数组去占时存储非!的字符,之后拷贝到原区间,不过要对原区间进行赋值\0
void Del_Negation(char* str,int n)
{
assert(str);
char* tmp = (char*)calloc(n+1, sizeof(char));//多一个1,是为了放置\0,避免strcpy越界拷贝
assert(tmp);
int cnt = 0;
int i = 0;
while (i < n)//将除!的字符赋值到tmp中
{
if (str[i] != '!')
{
tmp[cnt++] = str[i];
}
++i;
}
memset(str, 0, sizeof(char)*n);//对str那块内存重新赋值为\0,防止tmp拷贝到str中后,s扔有旧的数据
strcpy(str, tmp);
free(tmp);
tmp = NULL;
}
删除括号
删除括号,因为是对首尾进行的删除,这里通过2次strcpy就可以完成
void Del_Bracket( char* str, int left, int right)
{
assert(str);
char* tmp = (char*)calloc(right - left +1+1, sizeof(char));
assert(tmp);
str[right] = '\0';
strcpy(tmp, str+left+1);
strcpy(str+left, tmp);
}
第一个联结词的下标
找寻区间中第一双目运算符:找到就返回下标,否则就返回0.
int Find_Fist_operator( char* str, int left, int right)
{
int ret = 0;
while (left<right)
{
if (str[left + 1] == '+' || str[left + 1] == '*' || str[left + 1] == '>' || str[left + 1] == '=')
{
ret = left + 1;
return ret;
}
++left;
}
return 0;//如果ret是0,说明是非法,反之就正确
}
判断合式公式
注意区间的操作,不然很容易造成野指针的访问。
bool Is_CombForm(char* str, int left, int right)
{
if ((0 == (right - left))//区间是原子命题
&& ('A' <= str[left] || 'Z' >= str[left]))
{
return true;
}
if (str[left] != '(')//第一个字符是字母: A>(B)
{
int keyi = Find_Fist_operator(str, left, right);//找寻第一个双目运算符
if (keyi > 0)
{
if (str[keyi + 1] == '(')//A<(B)
{
Del_Bracket(str, keyi + 1, right);
return Is_CombForm(str, left, keyi - 1) && Is_CombForm(str, keyi + 1, right - 2);
}
else//A<B
{
return Is_CombForm(str, left, keyi - 1) && Is_CombForm(str, keyi + 1, right);
}
}
}
else//第一个是(:(A)<B
{
int brackt = 0;//当brackt为0,说明将双目运算符的左操作数全体找到了
int cnt = left;
int flag = 0;
while (cnt<right)
{
if (str[cnt] == '(')
{
brackt++;
}
if (str[cnt] == ')')
{
brackt--;
flag = cnt;
}
++cnt;
//[ left , flag] > [flag+2,right]
if (brackt == 0)
{
Del_Bracket(str, left, flag);
if (str[flag + 2] == '(')
{
Del_Bracket(str, flag + 2, right);
return Is_CombForm(str, left, flag - 2) && Is_CombForm(str, flag+ 2, right - 2);
}
else
{
return Is_CombForm(str, left, flag - 2) && Is_CombForm(str, flag + 2, right);
}
}
}
}
return false;
}
所有代码
#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include<time.h>
#include<windows.h>
using namespace std;
//思路用一个辅助数组去占时存储非!的字符,之后拷贝到原区间,不过要对原区间进行赋值0
void Del_Negation(char* str,int n)
{
assert(str);
char* tmp = (char*)calloc(n+1, sizeof(char));//多一个1,是为了放置\0,避免strcpy越界拷贝
assert(tmp);
int cnt = 0;
int i = 0;
while (i < n)//将除!的字符赋值到tmp中
{
if (str[i] != '!')
{
tmp[cnt++] = str[i];
}
++i;
}
memset(str, 0, sizeof(char)*n);//对str那块内存重新赋值为\0,防止tmp拷贝到str中后,s扔有旧的数据
strcpy(str, tmp);
free(tmp);
tmp = NULL;
}
//删除括号,因为是对首尾进行的删除,这里通过2次strcpy就可以完成
void Del_Bracket( char* str, int left, int right)
{
assert(str);
char* tmp = (char*)calloc(right - left +1+1, sizeof(char));
assert(tmp);
str[right] = '\0';
strcpy(tmp, str+left+1);
strcpy(str+left, tmp);
}
//判断是否为原子式
//因为去除括号的原因,当只有一个字母是原子式,否则不是
bool Is_operator(const char* str,int left,int right)
{
assert(str);
if ((0==(right-left))
&&('A' <=str[left]||'Z'>=str[left]))
{
return true;
}
return false;
}
//找寻区间中第一双目运算符:找到就返回下标,否则就返回0.
int Find_Fist_operator( char* str, int left, int right)
{
int ret = 0;
while (left<right)
{
if (str[left + 1] == '+' || str[left + 1] == '*' || str[left + 1] == '>' || str[left + 1] == '=')
{
ret = left + 1;
return ret;
}
++left;
}
return 0;//如果ret是0,说明是非法,反之就正确
}
bool Is_CombForm(char* str, int left, int right)
{
if ((0 == (right - left))//区间是原子命题
&& ('A' <= str[left] || 'Z' >= str[left]))
{
return true;
}
if (str[left] != '(')//第一个字符是字母: A>(B)
{
int keyi = Find_Fist_operator(str, left, right);//找寻第一个双目运算符
if (keyi > 0)
{
if (str[keyi + 1] == '(')//A<(B)
{
Del_Bracket(str, keyi + 1, right);
return Is_CombForm(str, left, keyi - 1) && Is_CombForm(str, keyi + 1, right - 2);
}
else//A<B
{
return Is_CombForm(str, left, keyi - 1) && Is_CombForm(str, keyi + 1, right);
}
}
}
else//第一个是(:(A)<B
{
int brackt = 0;//当brackt为0,说明将双目运算符的左操作数全体找到了
int cnt = left;
int flag = 0;
while (cnt<right)
{
if (str[cnt] == '(')
{
brackt++;
}
if (str[cnt] == ')')
{
brackt--;
flag = cnt;
}
++cnt;
//[ left , flag] > [flag+2,right]
if (brackt == 0)
{
Del_Bracket(str, left, flag);
if (str[flag + 2] == '(')
{
Del_Bracket(str, flag + 2, right);
return Is_CombForm(str, left, flag - 2) && Is_CombForm(str, flag+ 2, right - 2);
}
else
{
return Is_CombForm(str, left, flag - 2) && Is_CombForm(str, flag + 2, right);
}
}
}
}
return false;
}
void Text(char *str)
{
cout << str;
int sz = strlen(str);
Del_Negation(str, sz);
sz = strlen(str);
if (Is_CombForm(str, 0, sz-1))
{
printf("-------YES\n");
}
else
{
printf("----------NO\n");
}
}
int main ()
{
char arr1[] = "P>!R";
char arr2[] = "!(P>Q)>!R";
char arr3[] = "P>((P*R)>Q)";
char arr4[] = "((P>R)*(Q*(P>R)))=R";
char arr5[] = "((P>Q)>R)>Y";
char arr6[] = "PQ";
char arr7[] = "(P>RT)>Q";
char arr8[] = "((P>Q)*(P>QT))>(R*T)";
Text(arr1);
Text(arr2);
Text(arr3);
Text(arr4);
Text(arr5);
Text(arr6);
Text(arr7);
Text(arr8);
printf("-------------------------BY New Young\n");
return 0;
}
效果
总结
对于复杂的需要很多细节的递归函数,只能一个一个处理调理,不能急。