手撕VGG卷积神经网络-pytorch-详细注释版(可以直接替换自己数据集)-直接放置自己的数据集就能直接跑。跑的代码有问题的可以在评论区指出,看到了会回复。训练代码和预测代码均有。

简介: 手撕VGG卷积神经网络-pytorch-详细注释版(可以直接替换自己数据集)-直接放置自己的数据集就能直接跑。跑的代码有问题的可以在评论区指出,看到了会回复。训练代码和预测代码均有。

VGG”代表了牛津大学的Oxford Visual Geometry Group,VGG的Classification模型从原理上并没有与传统的CNN模型有太大不同。大家所用的Pipeline也都是:训练时候:各种数据Augmentation(剪裁,不同大小,调亮度,饱和度,对比度,偏色),剪裁送入CNN模型,Softmax,Backprop。测试时候:尽量把测试数据又各种Augmenting(剪裁,不同大小),把测试数据各种Augmenting后在训练的不同模型上的结果再继续Averaging出最后的结果。”对于网上很多的VGG的代码写的不够详细,比如没有详细的写出同时画出训练集的loss accuracy 和测试集的loss和accuracy的折线图,因此这些详细的使用pytorch框架复现了一下VGG代码,并且对于我们需要的loss和accuracy的折线图用matplotlib进行了绘制。


VGG网络结构图如下:



image.png


导入库导入库:


import torch
import torchvision
import torchvision.models
from matplotlib import pyplot as plt
from tqdm import tqdm
from torch import nn
from torch.utils.data import DataLoader
from torchvision.transforms import transforms

图像预处理方法:

data_transform = {
    "train": transforms.Compose([transforms.RandomResizedCrop(120),
                                 transforms.RandomHorizontalFlip(),
                                 transforms.ToTensor(),
                                 transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),
    "val": transforms.Compose([transforms.Resize((120, 120)), #这种预处理的地方尽量别修改,修改意味着需要修改网络结构的参数,如果新手的话请勿修改
                               transforms.ToTensor(),
                               transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}
数据导入方法: 导入自己的数据,自己的数据放在跟代码相同的文件夹下新建一个data文件夹,data文件夹里的新建一个train文件夹用于放置训练集的图片。同理新建一个val文件夹用于放置测试集的图片。
    train_data = torchvision.datasets.ImageFolder(root = "./data/train" ,   transform = data_transform["train"])
    traindata = DataLoader(dataset= train_data , batch_size= 32 , shuffle= True , num_workers=0 )
    # test_data = torchvision.datasets.CIFAR10(root = "./data" , train = False ,download = False,
    #                                           transform = trans)
    test_data = torchvision.datasets.ImageFolder(root = "./data/val" , transform = data_transform["val"])
    train_size = len(train_data)#求出训练集的长度
    test_size = len(test_data)  #求出测试集的长度
    print(train_size)  #输出训练集的长度
    print(test_size)   #输出测试集的长度
    testdata = DataLoader(dataset = test_data , batch_size= 32 , shuffle= True , num_workers=0 )#windows系统下,num_workers设置为0,linux系统下可以设置多进程
设置调用GPU,如果有GPU就调用GPU,如果没有GPU则调用CPU训练模型
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print("using {} device.".format(device))
VGG卷积神经网络 
class VGG(nn.Module):
    def __init__(self, features, num_classes=7, init_weights=False):#自己是几种就把这个7改成几
        super(VGG, self).__init__()
        self.features = features
        self.classifier = nn.Sequential(
            nn.Linear(4608, 4096),
            nn.ReLU(True),
            nn.Dropout(p=0.5),
            nn.Linear(4096, 4096),
            nn.ReLU(True),
            nn.Dropout(p=0.5),
            nn.Linear(4096, num_classes)
        )
        if init_weights:
            self._initialize_weights()   #参数初始化
    def forward(self, x):
        # N x 3 x 224 x 224
        x = self.features(x)
        # N x 512 x 7 x 7
        x = torch.flatten(x, start_dim=1)
        # N x 512*7*7
        x = self.classifier(x)
        return x
    def _initialize_weights(self):
        for m in self.modules():         #遍历各个层进行参数初始化
            if isinstance(m, nn.Conv2d):   #如果是卷积层的话 进行下方初始化
                # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                nn.init.xavier_uniform_(m.weight)  #正态分布初始化
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)     #如果偏置不是0 将偏置置成0  相当于对偏置进行初始化
            elif isinstance(m, nn.Linear):        #如果是全连接层
                nn.init.xavier_uniform_(m.weight)    #也进行正态分布初始化
                # nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)  #将所有偏执置为0
def make_features(cfg: list):
    layers = []
    in_channels = 3
    for v in cfg:
        if v == "M":
            layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
        else:
            conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
            layers += [conv2d, nn.ReLU(True)]
            in_channels = v
    return nn.Sequential(*layers)
cfgs = {
    'vgg11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'vgg13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'vgg16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
    'vgg19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}
def vgg(model_name="vgg16", **kwargs):
    assert model_name in cfgs, "Warning: model number {} not in cfgs dict!".format(model_name)
    cfg = cfgs[model_name]
    model = VGG(make_features(cfg), **kwargs)
    return model
VGGnet = vgg(num_classes=7, init_weights=True)   #将模型命名为#自己是几种就把这个7改成几
VGGnet.to(device)
print(VGGnet.to(device))  #输出模型结构


启动模型,将模型放入GPU,且进行测试


test1 = torch.ones(64, 3, 120, 120)  # 测试一下输出的形状大小 输入一个64,3,120,120的向量
test1 = VGGnet(test1.to(device))    #将向量打入神经网络进行测试
print(test1.shape)  #查看输出的结果

设置训练需要的参数,epoch,学习率learning 优化器。损失函数。

epoch  = 10#这里是训练的轮数
    learning = 0.0001 #学习率
    optimizer = torch.optim.Adam(VGGnet.parameters(), lr = learning)#优化器
    loss = nn.CrossEntropyLoss()#损失函数

设置四个空数组,用来存放训练集的loss和accuracy    测试集的loss和 accuracy

train_loss_all = []
    train_accur_all = []
    test_loss_all = []
    test_accur_all = []

开始训练:

for i in range(epoch):  #开始迭代
    train_loss = 0   #训练集的损失初始设为0
    train_num = 0.0   #
    train_accuracy = 0.0  #训练集的准确率初始设为0
    VGGnet.train()   #将模型设置成 训练模式
    train_bar = tqdm(traindata)  #用于进度条显示,没啥实际用处
    for step, data in enumerate(train_bar):  #开始迭代跑, enumerate这个函数不懂可以查查,将训练集分为 data是序号,data是数据
        img, target = data    #将data 分位 img图片,target标签
        optimizer.zero_grad()  # 清空历史梯度
        outputs = VGGnet(img.to(device))  # 将图片打入网络进行训练,outputs是输出的结果
        loss1 = loss(outputs, target.to(device))  # 计算神经网络输出的结果outputs与图片真实标签target的差别-这就是我们通常情况下称为的损失
        outputs = torch.argmax(outputs, 1)   #会输出10个值,最大的值就是我们预测的结果 求最大值
        loss1.backward()   #神经网络反向传播
        optimizer.step()  #梯度优化 用上面的abam优化
        train_loss += abs(loss1.item()) * img.size(0)  #将所有损失的绝对值加起来
        accuracy = torch.sum(outputs == target.to(device))   #outputs == target的 即使预测正确的,统计预测正确的个数,从而计算准确率
        train_accuracy = train_accuracy + accuracy   #求训练集的准确率
        train_num += img.size(0)  #
    print("epoch:{} , train-Loss:{} , train-accuracy:{}".format(i + 1, train_loss / train_num,   #输出训练情况
                                                                train_accuracy / train_num))
    train_loss_all.append(train_loss / train_num)   #将训练的损失放到一个列表里 方便后续画图
    train_accur_all.append(train_accuracy.double().item() / train_num)#训练集的准确率


 开始测试:

test_loss = 0   #同上 测试损失
    test_accuracy = 0.0  #测试准确率
    test_num = 0
    VGGnet.eval()   #将模型调整为测试模型
    with torch.no_grad():  #清空历史梯度,进行测试  与训练最大的区别是测试过程中取消了反向传播
        test_bar = tqdm(testdata)
        for data in test_bar:
            img, target = data
            outputs = VGGnet(img.to(device))
            loss2 = loss(outputs, target.to(device))
            outputs = torch.argmax(outputs, 1)
            test_loss = test_loss + abs(loss2.item()) * img.size(0)
            accuracy = torch.sum(outputs == target.to(device))
            test_accuracy = test_accuracy + accuracy
            test_num += img.size(0)
    print("test-Loss:{} , test-accuracy:{}".format(test_loss / test_num, test_accuracy / test_num))
    test_loss_all.append(test_loss / test_num)
    test_accur_all.append(test_accuracy.double().item() / test_num)


绘制训练集loss和accuracy图 和测试集的loss和accuracy图

plt.figure(figsize=(12,4))
    plt.subplot(1 , 2 , 1)
    plt.plot(range(epoch) , train_loss_all,
             "ro-",label = "Train loss")
    plt.plot(range(epoch), test_loss_all,
             "bs-",label = "test loss")
    plt.legend()
    plt.xlabel("epoch")
    plt.ylabel("Loss")
    plt.subplot(1, 2, 2)
    plt.plot(range(epoch) , train_accur_all,
             "ro-",label = "Train accur")
    plt.plot(range(epoch) , test_accur_all,
             "bs-",label = "test accur")
    plt.xlabel("epoch")
    plt.ylabel("acc")
    plt.legend()
    plt.show()
    torch.save(alexnet1.state_dict(), "alexnet.pth")
    print("模型已保存")


全部train训练代码:

import torch
import torchvision
import torchvision.models
from matplotlib import pyplot as plt
from tqdm import tqdm
from torch import nn
from torch.utils.data import DataLoader
from torchvision.transforms import transforms
data_transform = {
    "train": transforms.Compose([transforms.RandomResizedCrop(120),
                                 transforms.RandomHorizontalFlip(),
                                 transforms.ToTensor(),
                                 transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),
    "val": transforms.Compose([transforms.Resize((120, 120)),  # cannot 224, must (224, 224)
                               transforms.ToTensor(),
                               transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}
train_data = torchvision.datasets.ImageFolder(root = "./玉米data/train" ,   transform = data_transform["train"])
traindata = DataLoader(dataset=train_data, batch_size=128, shuffle=True, num_workers=0)  # 将训练数据以每次32张图片的形式抽出进行训练
test_data = torchvision.datasets.ImageFolder(root = "./玉米data/val" , transform = data_transform["val"])
train_size = len(train_data)  # 训练集的长度
test_size = len(test_data)  # 测试集的长度
print(train_size)   #输出训练集长度看一下,相当于看看有几张图片
print(test_size)    #输出测试集长度看一下,相当于看看有几张图片
testdata = DataLoader(dataset=test_data, batch_size=128, shuffle=True, num_workers=0)  # 将训练数据以每次32张图片的形式抽出进行测试
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("using {} device.".format(device))
class VGG(nn.Module):
    def __init__(self, features, num_classes=7, init_weights=False):
        super(VGG, self).__init__()
        self.features = features
        self.classifier = nn.Sequential(
            nn.Linear(4608, 4096),
            nn.ReLU(True),
            nn.Dropout(p=0.5),
            nn.Linear(4096, 4096),
            nn.ReLU(True),
            nn.Dropout(p=0.5),
            nn.Linear(4096, num_classes)
        )
        if init_weights:
            self._initialize_weights()   #参数初始化
    def forward(self, x):
        # N x 3 x 224 x 224
        x = self.features(x)
        # N x 512 x 7 x 7
        x = torch.flatten(x, start_dim=1)
        # N x 512*7*7
        x = self.classifier(x)
        return x
    def _initialize_weights(self):
        for m in self.modules():         #遍历各个层进行参数初始化
            if isinstance(m, nn.Conv2d):   #如果是卷积层的话 进行下方初始化
                # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                nn.init.xavier_uniform_(m.weight)  #正态分布初始化
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)     #如果偏置不是0 将偏置置成0  相当于对偏置进行初始化
            elif isinstance(m, nn.Linear):        #如果是全连接层
                nn.init.xavier_uniform_(m.weight)    #也进行正态分布初始化
                # nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)  #将所有偏执置为0
def make_features(cfg: list):
    layers = []
    in_channels = 3
    for v in cfg:
        if v == "M":
            layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
        else:
            conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
            layers += [conv2d, nn.ReLU(True)]
            in_channels = v
    return nn.Sequential(*layers)
cfgs = {
    'vgg11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'vgg13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'vgg16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
    'vgg19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}
def vgg(model_name="vgg16", **kwargs):
    assert model_name in cfgs, "Warning: model number {} not in cfgs dict!".format(model_name)
    cfg = cfgs[model_name]
    model = VGG(make_features(cfg), **kwargs)
    return model
VGGnet = vgg(num_classes=7, init_weights=True)   #将模型命名为alexnet1
VGGnet.to(device)
print(VGGnet.to(device))  #输出模型结构
test1 = torch.ones(64, 3, 120, 120)  # 测试一下输出的形状大小 输入一个64,3,120,120的向量
test1 = VGGnet(test1.to(device))    #将向量打入神经网络进行测试
print(test1.shape)  #查看输出的结果
epoch = 15  # 迭代次数即训练次数
learning = 0.001  # 学习率
optimizer = torch.optim.Adam(VGGnet.parameters(), lr=learning)  # 使用Adam优化器-写论文的话可以具体查一下这个优化器的原理
loss = nn.CrossEntropyLoss()  # 损失计算方式,交叉熵损失函数
train_loss_all = []  # 存放训练集损失的数组
train_accur_all = []  # 存放训练集准确率的数组
test_loss_all = []  # 存放测试集损失的数组
test_accur_all = []  # 存放测试集准确率的数组
for i in range(epoch):  #开始迭代
    train_loss = 0   #训练集的损失初始设为0
    train_num = 0.0   #
    train_accuracy = 0.0  #训练集的准确率初始设为0
    VGGnet.train()   #将模型设置成 训练模式
    train_bar = tqdm(traindata)  #用于进度条显示,没啥实际用处
    for step, data in enumerate(train_bar):  #开始迭代跑, enumerate这个函数不懂可以查查,将训练集分为 data是序号,data是数据
        img, target = data    #将data 分位 img图片,target标签
        optimizer.zero_grad()  # 清空历史梯度
        outputs = VGGnet(img.to(device))  # 将图片打入网络进行训练,outputs是输出的结果
        loss1 = loss(outputs, target.to(device))  # 计算神经网络输出的结果outputs与图片真实标签target的差别-这就是我们通常情况下称为的损失
        outputs = torch.argmax(outputs, 1)   #会输出10个值,最大的值就是我们预测的结果 求最大值
        loss1.backward()   #神经网络反向传播
        optimizer.step()  #梯度优化 用上面的abam优化
        train_loss += abs(loss1.item()) * img.size(0)  #将所有损失的绝对值加起来
        accuracy = torch.sum(outputs == target.to(device))   #outputs == target的 即使预测正确的,统计预测正确的个数,从而计算准确率
        train_accuracy = train_accuracy + accuracy   #求训练集的准确率
        train_num += img.size(0)  #
    print("epoch:{} , train-Loss:{} , train-accuracy:{}".format(i + 1, train_loss / train_num,   #输出训练情况
                                                                train_accuracy / train_num))
    train_loss_all.append(train_loss / train_num)   #将训练的损失放到一个列表里 方便后续画图
    train_accur_all.append(train_accuracy.double().item() / train_num)#训练集的准确率
    test_loss = 0   #同上 测试损失
    test_accuracy = 0.0  #测试准确率
    test_num = 0
    VGGnet.eval()   #将模型调整为测试模型
    with torch.no_grad():  #清空历史梯度,进行测试  与训练最大的区别是测试过程中取消了反向传播
        test_bar = tqdm(testdata)
        for data in test_bar:
            img, target = data
            outputs = VGGnet(img.to(device))
            loss2 = loss(outputs, target.to(device))
            outputs = torch.argmax(outputs, 1)
            test_loss = test_loss + abs(loss2.item()) * img.size(0)
            accuracy = torch.sum(outputs == target.to(device))
            test_accuracy = test_accuracy + accuracy
            test_num += img.size(0)
    print("test-Loss:{} , test-accuracy:{}".format(test_loss / test_num, test_accuracy / test_num))
    test_loss_all.append(test_loss / test_num)
    test_accur_all.append(test_accuracy.double().item() / test_num)
#下面的是画图过程,将上述存放的列表  画出来即可
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(range(epoch), train_loss_all,
         "ro-", label="Train loss")
plt.plot(range(epoch), test_loss_all,
         "bs-", label="test loss")
plt.legend()
plt.xlabel("epoch")
plt.ylabel("Loss")
plt.subplot(1, 2, 2)
plt.plot(range(epoch), train_accur_all,
         "ro-", label="Train accur")
plt.plot(range(epoch), test_accur_all,
         "bs-", label="test accur")
plt.xlabel("epoch")
plt.ylabel("acc")
plt.legend()
plt.show()
torch.save(VGGnet, "VGG.pth")
print("模型已保存")


全部predict代码:

import torch
from PIL import Image
from torch import nn
from torchvision.transforms import transforms
image_path = "1.png"#相对路径 导入图片
trans = transforms.Compose([transforms.Resize((120 , 120)),
                           transforms.ToTensor()])   #将图片缩放为跟训练集图片的大小一样 方便预测,且将图片转换为张量
image = Image.open(image_path)  #打开图片
print(image)  #输出图片 看看图片格式
image = image.convert("RGB")  #将图片转换为RGB格式
image = trans(image)   #上述的缩放和转张量操作在这里实现
print(image)   #查看转换后的样子
image = torch.unsqueeze(image, dim=0)  #将图片维度扩展一维
classes = ["1" , "2" , "3" , "4" , "5" , "6" , "7" ]  #预测种类
class VGG(nn.Module):
    def __init__(self, features, num_classes=10, init_weights=False):
        super(VGG, self).__init__()
        self.features = features
        self.classifier = nn.Sequential(
            nn.Linear(4608, 4096),
            nn.ReLU(True),
            nn.Dropout(p=0.5),
            nn.Linear(4096, 4096),
            nn.ReLU(True),
            nn.Dropout(p=0.5),
            nn.Linear(4096, num_classes)
        )
        if init_weights:
            self._initialize_weights()   #参数初始化
    def forward(self, x):
        # N x 3 x 224 x 224
        x = self.features(x)
        # N x 512 x 7 x 7
        x = torch.flatten(x, start_dim=1)
        # N x 512*7*7
        x = self.classifier(x)
        return x
    def _initialize_weights(self):
        for m in self.modules():         #遍历各个层进行参数初始化
            if isinstance(m, nn.Conv2d):   #如果是卷积层的话 进行下方初始化
                # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                nn.init.xavier_uniform_(m.weight)  #正态分布初始化
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)     #如果偏置不是0 将偏置置成0  相当于对偏置进行初始化
            elif isinstance(m, nn.Linear):        #如果是全连接层
                nn.init.xavier_uniform_(m.weight)    #也进行正态分布初始化
                # nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)  #将所有偏执置为0
def make_features(cfg: list):
    layers = []
    in_channels = 3
    for v in cfg:
        if v == "M":
            layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
        else:
            conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
            layers += [conv2d, nn.ReLU(True)]
            in_channels = v
    return nn.Sequential(*layers)
cfgs = {
    'vgg11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'vgg13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'vgg16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
    'vgg19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}
def vgg(model_name="vgg16", **kwargs):
    assert model_name in cfgs, "Warning: model number {} not in cfgs dict!".format(model_name)
    cfg = cfgs[model_name]
    model = VGG(make_features(cfg), **kwargs)
    return model
#以上是神经网络结构,因为读取了模型之后代码还得知道神经网络的结构才能进行预测
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")  #将代码放入GPU进行训练
print("using {} device.".format(device))
model = torch.load("VGG.pth")  #读取模型
model.eval()  #关闭梯度,将模型调整为测试模式
with torch.no_grad():  #梯度清零
    outputs = model(image.to(device))  #将图片打入神经网络进行测试
    print(model)  #输出模型结构
    print(outputs)  #输出预测的张量数组
    ans = (outputs.argmax(1)).item()  #最大的值即为预测结果,找出最大值在数组中的序号,
    # 对应找其在种类中的序号即可然后输出即为其种类
    print(classes[ans])


相关实践学习
基于阿里云DeepGPU实例,用AI画唯美国风少女
本实验基于阿里云DeepGPU实例,使用aiacctorch加速stable-diffusion-webui,用AI画唯美国风少女,可提升性能至高至原性能的2.6倍。
相关文章
|
1月前
|
机器学习/深度学习 算法 PyTorch
RPN(Region Proposal Networks)候选区域网络算法解析(附PyTorch代码)
RPN(Region Proposal Networks)候选区域网络算法解析(附PyTorch代码)
227 1
|
1月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【PyTorch实战演练】AlexNet网络模型构建并使用Cifar10数据集进行批量训练(附代码)
【PyTorch实战演练】AlexNet网络模型构建并使用Cifar10数据集进行批量训练(附代码)
58 0
|
1月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【PyTorch实战演练】使用Cifar10数据集训练LeNet5网络并实现图像分类(附代码)
【PyTorch实战演练】使用Cifar10数据集训练LeNet5网络并实现图像分类(附代码)
60 0
|
9天前
|
机器学习/深度学习 数据可视化 PyTorch
PyTorch小技巧:使用Hook可视化网络层激活(各层输出)
这篇文章将演示如何可视化PyTorch激活层。可视化激活,即模型内各层的输出,对于理解深度神经网络如何处理视觉信息至关重要,这有助于诊断模型行为并激发改进。
11 1
|
12天前
|
机器学习/深度学习 数据采集 算法
|
16天前
|
机器学习/深度学习 数据可视化 PyTorch
利用PyTorch实现基于MNIST数据集的手写数字识别
利用PyTorch实现基于MNIST数据集的手写数字识别
20 2
|
1月前
|
机器学习/深度学习 算法 PyTorch
【PyTorch实战演练】深入剖析MTCNN(多任务级联卷积神经网络)并使用30行代码实现人脸识别
【PyTorch实战演练】深入剖析MTCNN(多任务级联卷积神经网络)并使用30行代码实现人脸识别
55 2
|
1月前
|
机器学习/深度学习 自然语言处理 PyTorch
【PyTorch实战演练】基于全连接网络构建RNN并生成人名
【PyTorch实战演练】基于全连接网络构建RNN并生成人名
23 0
|
1月前
|
机器学习/深度学习 PyTorch 算法框架/工具
卷积神经元网络中常用卷积核理解及基于Pytorch的实例应用(附完整代码)
卷积神经元网络中常用卷积核理解及基于Pytorch的实例应用(附完整代码)
20 0
|
1月前
|
机器学习/深度学习 数据采集 人工智能
m基于深度学习网络的手势识别系统matlab仿真,包含GUI界面
m基于深度学习网络的手势识别系统matlab仿真,包含GUI界面
41 0