目录:
1.二叉树的概念及结构
2.二叉树链式结构的实现
1.二叉树的概念及结构
①概念:一棵二叉树是结点的一个有限集合,该集合或者为空,或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成。
②二叉树的特点:
每个结点最多有两棵子树,即二叉树不存在度大于2的结点。(度最多为2)
二叉树的子树有左右之分,其子树的次序不能颠倒。
③现实中的二叉树:
当一名普通的人看到这样一颗树,可能会想:好标准的一棵树
当一个程序猿看到这样一棵树,可能会想:好像数据结构中的二叉树,并且还是颗满二叉树
④数据结构中的二叉树:
注:二叉树最多有两个度
⑤特殊的二叉树:
满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉 树。也就是说,如果一个二叉树的层数为K,且结点总数是(2^k) -1 ,则它就是满二叉树。
完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对 于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号 从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉 树。
⑥二叉树的存储结构: 二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。
⑦二叉树的性质:
若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1) 个结点.
若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2^h- 1.
对任何一棵二叉树, 如果度为0其叶结点个数为 n0, 度为2的分支结点个数为 n2,则有n0=n2 +1
若规定根节点的层数为1,具有n个结点的满二叉树的深度,h=log₂n+1
⑧练习题