复杂时序逻辑电路

简介: 1. 时序逻辑电路的基本结构和分类1-1. 基本结构时序逻辑电路由组合电路和存储电路两部分组成,通过反馈回路将两部分连成一个整体。时序逻辑电路的一般结构如下图所示。图中,X~1~,…,X~n~为时序逻辑电路的输入信号;Z~1~,…,Z~m~为时序逻辑电路的输出信号;y~1~,…,y~s~为时序逻辑电路的状态信号,又称为组合电路的状态变量;Y~1~,…,Y~r~为时序逻辑电路中的激励信号,它决定电路下一时刻的状态;CP为时钟脉冲信号,它是同步时序逻辑电路中的定时信号。​ 若记输入信号为$\vec{X}$,输出信号为$\vec{Z}$,激励信号为$\vec{Y}$,状态信号为$\v

1. 时序逻辑电路的基本结构和分类

1-1. 基本结构

时序逻辑电路由组合电路和存储电路两部分组成,通过反馈回路将两部分连成一个整体。时序逻辑电路的一般结构如下图所示。

图中,X~1~,…,X~n~为时序逻辑电路的输入信号;Z~1~,…,Z~m~为时序逻辑电路的输出信号;y~1~,…,y~s~为时序逻辑电路的状态信号,又称为组合电路的状态变量;Y~1~,…,Y~r~为时序逻辑电路中的激励信号,它决定电路下一时刻的状态;CP为时钟脉冲信号,它是同步时序逻辑电路中的定时信号。

若记输入信号为$\vec{X}$,输出信号为$\vec{Z}$,激励信号为$\vec{Y}$,状态信号为$\vec{y}$,于是上述的4个向量之间的转换关系可以由下面的三个公式表示:

其中,式1-1.1表达了输出信号与输入信号和状态信号之间的关系,被称为输出方程组;式1-1.2表示了激励信号与状态信号和输入信号之间的关系,称为时序电路的激励方程;式1-1.3表示了电路从现态到次态的转换过程,被称作状态转换方程。

在这里大家可以看到,上面的时序电路又是状态($\vec{y}$)依赖的,我们常把这样的电路叫做状态机。

1-2. 时序逻辑电路的分类

1-2-1. 异步时序电路与同步时序电路

关于这个问题在上一章有过讨论。这里还要再啰嗦两句。

可以这样理解:如果时序电路中个存储单元的状态更新不是同时发生的,则这种电路称为异步时序电路;如果个存储电路状态是在同一信号的同一边沿更新的,就可以称作同步时序电路。

导致这种更新不同步的原因可能是:电路的触发器的时钟输入端没有连接在相同的时钟脉冲上,或者这个电路里根本就没有时钟脉冲。

1-2-2. 米利型和摩尔型电路

关于这个问题的详细描述将在下一章出现。

2. 几个典型的时序逻辑电路

多个触发器在同一时钟下组合在一起,来保存相关信息的电路称为寄存器。就像触发器一样, 寄存器也可以有其它的控制信号。你将了解具有附加控制信号的寄存器的行为。

计数器是广泛使用的时序电路。在本次实验中,你将用几种方法设计寄存器和计数器。 请参考Vivado 教程上关于如何使用Vivado创建工程和验证电路。

2-1. 可同步重置、载入信号的寄存器

在计算机系统中,相关信息常常在同时被存储。 寄存器(register )以这样的方式存储信息比特,即系统可以在同一时间写入或读出所有的比特。寄存器的例子包含数据、地址、控制和状态。简单的寄存器数据的输入引脚和输出引脚分开,但它们用相同的时钟源。一个简单寄存器的设计如下。

module Register (input [3:0] D, input Clk, output reg [3:0] Q);
  always @(posedge Clk)
    Q <= D;
endmodule

这个简单的寄存器会在每个时钟周期工作,保存需要的信息。然而,在有的情况下,需要只有在特定条件发生时,寄存器内容才被更新。比如,在计算机系统中的状态寄存器只在特定的指令执行时才更新。在这种情况下,寄存器的时钟需要用一个控制信号控制。这样的寄存器需要包含一个时钟使能引脚。下面是这种寄存器的设计。

module Register_with_synch_load_behavior(input [3:0] D, input Clk, 
                                         input load, output reg [3:0] Q);
  always @(posedge Clk)
    if (load)
      Q <= D;
endmodule

  1. 添加开发板相对应的XDC文件,编辑XDC文件,加入相关的引脚,将 Clk 赋给 SW15,D input 给SW3-SW0,reset 给 SW4, load 给 SW5,Q 给 LED3- LED0。
  2. 把下面这行代码加入XDC文件,使SW15 允许被当作时钟使用。 set_property CLOCK_DEDICATED_ROUTE FALSE [get_nets { clk }];
  3. 综合你的设计。
  4. 实现你的设计,查看Project Summary和Utilization table,注意到1个BUFG和 11 个IO被使用了。
  5. 生成比特流文件,将其下载到Nexys4 DDR开发板,并验证功能。
相关文章
|
8月前
CAN总线位时序的介绍
CAN总线利用CAN_H和CAN_L线的电位差传输数据,显性电平(0,2.5V差值)对应逻辑0,隐性电平(1,0V差值)对应逻辑1。由于NRZ无返回零通信方式,同步是个挑战,特别是距离远时。为解决同步问题,CAN总线采用硬件同步和再同步技术,位时序分为同步段、传播段、两个相位缓冲段,每个段由Tq时间量子构成,允许调整以确保多个单元间的同步采样。
113 0
|
8月前
CAN总线位时序
CAN控制器根据两根线上的电位差来判断总线电平。总线电平分为显性电平和隐性电平,二者必居其一。发送方通过使总线电平发生变化,将消息发送给接收方。 显性电平对应逻辑 0,CAN_H 和 CAN_L 之差为 2.5V 左右。而隐性电平对应逻辑 1,CAN_H 和 CAN_L 之差为0V。隐形电平具有包容的意味,只有所有的单元都输出隐性电平,总线上才为隐性电平(显性电平比隐性电平更强)。 CAN总线是采用NRZ(Non-Return to Zero)方法进行通讯的,这种通信有一种不好的地方,就是各个位的开头或者结尾都没有附加同步信号。CAN总线在长距离运输中,由于发送单元和接收单元存在的时钟频率
|
存储 数据采集
时序逻辑电路的应用及其作用
一、什么时序逻辑电路 时序逻辑电路是一种电子电路,用于处理和存储时序信息。它通过使用时钟信号来控制电路的行为,以实现特定的功能。 时序逻辑电路通常由触发器和组合逻辑电路组成。触发器是一种存储器件,可以存储和传递电信号。组合逻辑电路则根据输入信号的组合产生输出信号。 时序逻辑电路的行为是根据时钟信号的变化来确定的。时钟信号是一个周期性的信号,用于同步电路的操作。在每个时钟周期中,电路根据输入信号和当前状态来计算输出信号,并在时钟信号的上升沿或下降沿时更新状态。 时序逻辑电路可以用于实现各种功能,如计数器、状态机、时序控制器等。它在数字系统中起着重要的作用,用于处理时序信息和控制电路的行为。 二、
765 0
|
存储 芯片
基本逻辑电路的介绍
基本逻辑电路:从门电路到集成电路 逻辑电路是数字电路中的一种,它用于处理和操作数字信号。逻辑电路可以根据输入信号的不同组合,产生不同的输出信号。在数字系统中,逻辑电路扮演着重要的角色,它们可以实现计算、控制、存储等功能。本文将介绍逻辑电路的基本原理和发展历程。 一、门电路:逻辑电路的基础 门电路是逻辑电路的基础,它是由逻辑门电路组成的。逻辑门电路是一种基本的数字电路元件,它可以实现与门、或门、非门等逻辑运算。门电路的输入和输出都是数字信号,它们通过逻辑门电路的布尔运算产生不同的输出信号。门电路可以根据不同的逻辑运算实现不同的功能,如逻辑运算、比较运算、计数运算等。 二、组合逻辑电路:多
170 0
|
6月前
|
异构计算
FPGA入门(4):时序逻辑(二)
FPGA入门(4):时序逻辑(二)
51 0
|
6月前
|
存储 异构计算
FPGA入门(4):时序逻辑(一)
FPGA入门(4):时序逻辑
64 0
|
8月前
|
芯片
组合逻辑电路之半加器
组合逻辑电路之半加器
272 0
组合逻辑电路之半加器
|
8月前
|
数据采集 算法 索引
基于DSP的数字信号频率分析
基于DSP的数字信号频率分析
132 3
|
8月前
|
测试技术
组合逻辑电路
组合逻辑电路
157 0