【算法题解】 Day14 哈希表

简介: 今天的算法是 「哈希表」 相关,“算法题解系列文章旨在精选重点与易错的算法题,总结常见的算法思路与可能出现的错误,以实战习题的形式理解算法,使用算法。”

1. 两数之和

题目

1. 两数之和 难度:easy

给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target  的那 两个 整数,并返回它们的数组下标。

你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。

你可以按任意顺序返回答案。

示例 1:

输入:nums = [2,7,11,15], target = 9
输出:[0,1]
解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。

示例 2:

输入: nums = [3,2,4], target = 6
输出: [1,2]

示例 3:

输入: nums = [3,3], target = 6
输出: [0,1]

提示:

  • 2 <= nums.length <= 10^4
  • -10^9 <= nums[i] <= 10^9
  • -10^9 <= target <= 10^9
  • 只会存在一个有效答案

 

方法一:暴力

思路

最容易想到的方法是枚举数组中的每一个数 x,寻找数组中是否存在 target - x

当我们使用遍历整个数组的方式寻找 target - x 时,需要注意到每一个位于 x 之前的元素都已经和 x匹配过,因此不需要再进行匹配。而每一个元素不能被使用两次,所以我们只需要在 x 后面的元素中寻找 target - x

for i..:
    for j..:
        if nums[i] + nums[j] == target:
            return ..

 

解题

Python:

class Solution:
    def twoSum(self, nums: List[int], target: int) -> List[int]:
        n = len(nums)
        for i in range(n):
            for j in range(i + 1, n):
                if nums[i] + nums[j] == target:
                    return [i, j]
        
        return []

Java:

class Solution {
    public int[] twoSum(int[] nums, int target) {
        int n = nums.length;
        for (int i = 0; i < n; ++i) {
            for (int j = i + 1; j < n; ++j) {
                if (nums[i] + nums[j] == target) {
                    return new int[]{i, j};
                }
            }
        }
        return new int[0];
    }
}

 

方法二:哈希表

思路

上述「暴力」解法虽然方便,但是时间复杂度过高 O(n2),因此,接下来我们要做一定的优化,降低时间复杂度;

那该如何优化呢?使用哈希表,可以将寻找 target - x 的时间复杂度降低到从 O(n) 降低到 O(1)。

创建一个哈希表,对于每一个 x,首先查询哈希表中是否存在 target - x,然后将 x 插入到哈希表中,即可保证不会让 x 和自己匹配。

for ..:
    if target - num in map:
        return ..

 

解题

Python:

class Solution:
    def twoSum(self, nums: List[int], target: int) -> List[int]:
        hashtable = dict()
        for i, num in enumerate(nums):
            if target - num in hashtable:
                return [hashtable[target - num], i]
            hashtable[nums[i]] = i
        return []

Java:

class Solution {
    public int[] twoSum(int[] nums, int target) {
        Map<Integer, Integer> hashtable = new HashMap<Integer, Integer>();
        for (int i = 0; i < nums.length; ++i) {
            if (hashtable.containsKey(target - nums[i])) {
                return new int[]{hashtable.get(target - nums[i]), i};
            }
            hashtable.put(nums[i], i);
        }
        return new int[0];
    }
}

 

299. 猜数字游戏

题目

299. 猜数字游戏 难度:medium

你在和朋友一起玩 猜数字(Bulls and Cows)游戏,该游戏规则如下:

写出一个秘密数字,并请朋友猜这个数字是多少。朋友每猜测一次,你就会给他一个包含下述信息的提示:

  • 猜测数字中有多少位属于数字和确切位置都猜对了(称为 "Bulls",公牛),
  • 有多少位属于数字猜对了但是位置不对(称为 "Cows",奶牛)。也就是说,这次猜测中有多少位非公牛数字可以通过重新排列转换成公牛数字。

给你一个秘密数字 secret 和朋友猜测的数字 guess ,请你返回对朋友这次猜测的提示。

提示的格式为 "xAyB" ,x 是公牛个数, y 是奶牛个数,A 表示公牛,B 表示奶牛。

请注意秘密数字和朋友猜测的数字都可能含有重复数字。

示例 1:

输入:secret = "1807", guess = "7810"
输出:"1A3B"
解释:数字和位置都对(公牛)用 '|' 连接,数字猜对位置不对(奶牛)的采用斜体加粗标识。
"1807"
  |
"7810"

示例 2:

输入:secret = "1123", guess = "0111"
输出:"1A1B"
解释:数字和位置都对(公牛)用 '|' 连接,数字猜对位置不对(奶牛)的采用斜体加粗标识。
"1123"        "1123"
  |      or     |
"0111"        "0111"
注意,两个不匹配的 1 中,只有一个会算作奶牛(数字猜对位置不对)。通过重新排列非公牛数字,其中仅有一个 1 可以成为公牛数字。

提示:

  • 1 <= secret.length, guess.length <= 1000
  • secret.length == guess.length
  • secret 和 guess 仅由数字组成

 

方法一:遍历

思路

根据题意,对于公牛,需要满足数字和确切位置都猜对。我们可以遍历 secret 和 guess,统计满足 secret[i]=guess[i] 的下标个数,即为公牛的个数。

对于奶牛,需要满足数字猜对但是位置不对。我们可以在 secret[i] ≠ guess[i] 时,分别统计 secret 和 guess 的各个字符的出现次数,记在两个长度为 10 的数组中。根据题目所述的「这次猜测中有多少位非公牛数字可以通过重新排列转换成公牛数字」,由于多余的数字无法匹配,对于 0 到 9 的每位数字,应取其在 secret 和 guess 中的出现次数的最小值。将每位数字出现次数的最小值累加,即为奶牛的个数。
 

解题

Python:

class Solution:
    def getHint(self, secret: str, guess: str) -> str:
        bulls = 0
        cntS, cntG = [0] * 10, [0] * 10
        for s, g in zip(secret, guess):
            if s == g:
                bulls += 1
            else:
                cntS[int(s)] += 1
                cntG[int(g)] += 1
        cows = sum(min(s, g) for s, g in zip(cntS, cntG))
        return f'{bulls}A{cows}B'

Java:

class Solution {
    public String getHint(String secret, String guess) {
        int bulls = 0;
        int[] cntS = new int[10];
        int[] cntG = new int[10];
        for (int i = 0; i < secret.length(); ++i) {
            if (secret.charAt(i) == guess.charAt(i)) {
                ++bulls;
            } else {
                ++cntS[secret.charAt(i) - '0'];
                ++cntG[guess.charAt(i) - '0'];
            }
        }
        int cows = 0;
        for (int i = 0; i < 10; ++i) {
            cows += Math.min(cntS[i], cntG[i]);
        }
        return Integer.toString(bulls) + "A" + Integer.toString(cows) + "B";
    }
}

 

后记

📝 上篇精讲: 【算法题解】 Day13 滑动窗口
💖 我是  𝓼𝓲𝓭𝓲𝓸𝓽,期待你的关注;
👍 创作不易,请多多支持;
🔥 系列专栏: 算法题解
目录
相关文章
|
2月前
|
存储 算法 安全
探究‘公司禁用 U 盘’背后的哈希表算法与 Java 实现
在数字化办公时代,信息安全至关重要。许多公司采取“禁用U盘”策略,利用哈希表算法高效管理外接设备的接入权限。哈希表通过哈希函数将设备标识映射到数组索引,快速判断U盘是否授权。例如,公司预先将允许的U盘标识存入哈希表,新设备接入时迅速验证,未授权则禁止传输并报警。这有效防止恶意软件和数据泄露,保障企业信息安全。 代码示例展示了如何用Java实现简单的哈希表,模拟公司U盘管控场景。哈希表不仅用于设备管理,还在文件索引、用户权限等多方面助力信息安全防线的构建,为企业数字化进程保驾护航。
|
5天前
|
存储 缓存 监控
企业监控软件中 Go 语言哈希表算法的应用研究与分析
在数字化时代,企业监控软件对企业的稳定运营至关重要。哈希表(散列表)作为高效的数据结构,广泛应用于企业监控中,如设备状态管理、数据分类和缓存机制。Go 语言中的 map 实现了哈希表,能快速处理海量监控数据,确保实时准确反映设备状态,提升系统性能,助力企业实现智能化管理。
23 3
|
5月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
91 3
|
5月前
|
算法 Java 数据库
数据结构与算法学习十五:哈希表
这篇文章详细介绍了哈希表的概念、应用实例、实现思路,并提供了使用Java实现的哈希表代码。
97 0
数据结构与算法学习十五:哈希表
|
7天前
|
存储 算法 安全
基于 Go 语言的公司内网管理软件哈希表算法深度解析与研究
在数字化办公中,公司内网管理软件通过哈希表算法保障信息安全与高效管理。哈希表基于键值对存储和查找,如用户登录验证、设备信息管理和文件权限控制等场景,Go语言实现的哈希表能快速验证用户信息,提升管理效率,确保网络稳定运行。
19 0
|
2月前
|
存储 监控 算法
员工电脑监控屏幕场景下 Python 哈希表算法的探索
在数字化办公时代,员工电脑监控屏幕是保障信息安全和提升效率的重要手段。本文探讨哈希表算法在该场景中的应用,通过Python代码例程展示如何使用哈希表存储和查询员工操作记录,并结合数据库实现数据持久化,助力企业打造高效、安全的办公环境。哈希表在快速检索员工信息、优化系统性能方面发挥关键作用,为企业管理提供有力支持。
50 20
|
11天前
|
存储 算法 量子技术
解锁文档管理系统高效检索奥秘:Python 哈希表算法探究
在数字化时代,文档管理系统犹如知识宝库,支撑各行各业高效运转。哈希表作为核心数据结构,通过哈希函数将数据映射为固定长度的哈希值,实现快速查找与定位。本文聚焦哈希表在文档管理中的应用,以Python代码示例展示其高效检索特性,并探讨哈希冲突解决策略,助力构建智能化文档管理系统。
|
2月前
|
存储 算法 Serverless
剖析文件共享工具背后的Python哈希表算法奥秘
在数字化时代,文件共享工具不可或缺。哈希表算法通过将文件名或哈希值映射到存储位置,实现快速检索与高效管理。Python中的哈希表可用于创建简易文件索引,支持快速插入和查找文件路径。哈希表不仅提升了文件定位速度,还优化了存储管理和多节点数据一致性,确保文件共享工具高效运行,满足多用户并发需求,推动文件共享领域向更高效、便捷的方向发展。
|
2月前
|
存储 监控 JavaScript
深度探秘:运用 Node.js 哈希表算法剖析员工工作时间玩游戏现象
在现代企业运营中,确保员工工作时间高效专注至关重要。为应对员工工作时间玩游戏的问题,本文聚焦Node.js环境下的哈希表算法,展示其如何通过快速查找和高效记录员工游戏行为,帮助企业精准监测与分析,遏制此类现象。哈希表以IP地址等为键,存储游戏网址、时长等信息,结合冲突处理与动态更新机制,确保数据完整性和时效性,助力企业管理层优化工作效率。
37 3
|
2月前
|
存储 算法 安全
基于哈希表的文件共享平台 C++ 算法实现与分析
在数字化时代,文件共享平台不可或缺。本文探讨哈希表在文件共享中的应用,包括原理、优势及C++实现。哈希表通过键值对快速访问文件元数据(如文件名、大小、位置等),查找时间复杂度为O(1),显著提升查找速度和用户体验。代码示例展示了文件上传和搜索功能,实际应用中需解决哈希冲突、动态扩容和线程安全等问题,以优化性能。