前言:
●由于作者水平有限,文章难免存在谬误之处,敬请读者斧正,俚语成篇,恳望指教!
——By 作者:新晓·故知
从本篇笔记起,进入高阶C语言的学习!
1-深度剖析数据在内存中的存储
1. 数据类型介绍
前面我们已经学习了基本的内置类型,以及他们所占存储空间的大小。
char 字符数据类型
short 短整型
int 整形
long 长整型
long long 更长的整形
float 单精度浮点数
double 双精度浮点数
C语言有没有字符串类型?
类型的意义:
1. 使用这个类型开辟内存空间的大小(大小决定了使用范围)。
2. 如何看待内存空间的视角
1.1 类型的基本归类:
整形家族:
char
unsigned char
signed char
short
unsigned short [int]
signed short [int]
int
unsigned int
signed int
long
unsigned long [int]
signed long [int]
浮点数家族:
float
double
构造类型:
> 数组类型
> 结构体类型 struct
> 枚举类型 enum
> 联合类型 union
指针类型:
int *pi;
char *pc;
float* pf;
void* pv;
空类型:
void 表示空类型(无类型)
通常应用于函数的返回类型、函数的参数、指针类型。
编辑
c99 中引入了布尔类型 #include <stdbool.h> int main() { _Bool flag = true; if (flag) { printf("hehe\n"); } return 0; }
在C语言中,bool类型是对int类型的重命名而已!
在C++中使用的广泛!
编辑
编辑
编辑
编辑
char归结到整型,因为每一个字符变量存的是一个字符,而字符对应的是ASCII码值,为整数
位置一: void test() { ; } 位置二: void test(void) { ; } 位置三: void test() { void* p; } int main() { test(); return 0; }
编辑
——By 作者:新晓·故知编辑
2. 整形在内存中的存储
我们之前讲过一个变量的创建是要在内存中开辟空间的。空间的大小是根据不同的类型而决定的。
那接下来我们谈谈数据在所开辟内存中到底是如何存储的?
比如:
int a = 20;
int b = -10;
我们知道为 a 分配四个字节的空间。
那如何存储?
编辑
编辑
下来了解下面的概念:
2.1 原码、反码、补码
计算机中的整数有三种表示方法,即原码、反码和补码。
三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位
负整数的三种表示方法各不相同。
编辑
编辑
编辑编辑
编辑
编辑
——By 作者:新晓·故知编辑
原码
直接将二进制按照正负数的形式翻译成二进制就可以。
反码
将原码的符号位不变,其他位依次按位取反就可以得到了。
补码
反码+1就得到补码。
正数的原、反、补码都相同。
对于整形来说:数据存放内存中其实存放的是补码。
为什么呢?
在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统 一处理;
同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。
我们看看在内存中的存储:
我们可以看到对于a和b分别存储的是补码。但是我们发现顺序有点不对劲。
这是又为什么?
2.2 大小端介绍
什么大端小端:
大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中;
小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,保存在内存的高地址中。
为什么有大端和小端:
为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8bit。但是在C语言中除了8 bit的char之外,还有16 bit的short型,32 bit的long型(要看具体的编译器),另外,对于位数大于8位 的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。
例如:一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中,0x22 放在高地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式
百度2015年系统工程师笔试题:
请简述大端字节序和小端字节序的概念,设计一个小程序来判断当前机器的字节序。(10分)
//代码1 #include <stdio.h> int check_sys() { int i = 1; return (*(char *)&i); } int main() { int ret = check_sys(); if(ret == 1) { printf("小端\n"); } else { printf("大端\n"); } return 0; } //代码2 int check_sys() { union { int i; char c; }un; un.i = 1; return un.c; }
代码1:
int main() { int a = 1; char* p = (char*)&a;//int* if (1 == *p) { printf("小端\n"); } else { printf("大端\n"); } }
编辑
编辑
代码二:
int check_sys() { int a = 1; char *p = (char*)&a; if (1 == *p) return 1;//小端 else return 0;//大端 } int main() { int a = 1; int ret = check_sys();//返回1是小端,返回是大端 if (1 == ret) { printf("小端\n"); } else { printf("大端\n"); } return 0; }
编辑
int check_sys() { int a = 1; char* p = (char*)&a; return *p; } int main() { int a = 1; int ret = check_sys();//返回1是小端,返回是大端 if (1 == ret) { printf("小端\n"); } else { printf("大端\n"); } return 0; }
编辑
代码三:
int check_sys() { int a = 1; return *(char*)&a; } int main() { int a = 1; int ret = check_sys();//返回1是小端,返回是大端 if (1 == ret) { printf("小端\n"); } else { printf("大端\n"); } return 0; }
编辑
2.3 练习
1. 输出什么? #include <stdio.h> int main() { char a = -1; signed char b = -1; unsigned char c = -1; printf(" a=%d\n b=%d\n c=%d\n", a, b, c); return 0; }
编辑
下面程序输出什么?
2. #include <stdio.h> int main() { char a = -128; printf("%u\n",a); return 0; }
编辑
char类型中的-128
-0 :原码 1000 0000 的补码为1 0000 0000 ,由于char 是 八位 ,所以取低八位00000000,
+0 :原码为0000 00000 ,补码为也为 0000 0000 , 虽然补码0都是相同的,但是有两个0 ,既然有两个0 ,况且0既不是正数,也不是负数, 用原码为0000 0000 表示就行了, 这样一来,有符号的char ,原码都用来表示-127~127 之间的数了,唯独剩下原码1000 0000 没有用,现在再来探讨一下关于剩下的那个1000 0000。
————————————————
-128的由来
既然 -127 ~0~ 127都有相应的原码与其对应,那么1000 0000 表示什么呢,当然是-128了,为什么是-128呢, 为什么能用它表示-128进行运算,如果不要限制为char 型(即不要限定是8位),
-128的原码:1 1000 0000 ,9位,最高位符号位,
再算它的反码:1 0111 1111,
进而,补码为: 1 1000 0000,这是-128的补码,发现和原码一样, 但是在char 型中,是可以用1000 000 表示-128的,关键在于char 是8位,它把-128的最高位符号位1 丢弃了,截断后-128的原码为1000 000 和-0的原码相同,也就是说1000 0000 和-128丢弃最高位后余下的8位相同,所以才可以用-0 表示-128,这样,当初剩余的-0(1000 0000),被拿来表示截断后的-128,因为即使截断后的-128和char 型范围的其他数(-127~127)运算也不会影响结果, 所以才敢这么表示-128。
————————————————
比如 -128+(-1):
1000 0000——————丢弃最高位的-128
+ 1111 1111 —————– -1
——————
10111 1111 ——————char 取八位,这样结果不正确,不过没关系 ,结果-129本来就超出char型了,当然不能表示了。
比如 -128+127:
1000 0000
+ 0111 1111
——————
1111 1111 ————– -1 结果正确, 所以,这就是为什么能用 1000 0000表示-128的原因
当数据总线从内存中取出的是1000 000 ,CPU会给它再添最高一位,变为1 1000 0000 这样才能转化为 -128输出,不然1000 0000 如何输出?
————————————————
整型提升:
整型提升是隐式类型转换的一种,隐式类型转换顾名思义就是偷偷的进行转换。这种类型转换所做的动作我们平时都不会注意到,因为它是偷偷的发生的。
3. #include <stdio.h> int main() { char a = 128; printf("%u\n",a); return 0; }
4. int i= -20; unsigned int j = 10; printf("%d\n", i+j); //按照补码的形式进行运算,最后格式化成为有符号整数
5. unsigned int i; for(i = 9; i >= 0; i--) { printf("%u\n",i); }
6. int main() { char a[1000]; int i; for(i=0; i<1000; i++) { a[i] = -1-i; } printf("%d",strlen(a)); return 0; }
7. #include <stdio.h> unsigned char i = 0; int main() { for(i = 0;i<=255;i++) { printf("hello world\n"); } return 0; }
——By 作者:新晓·故知
3. 浮点型在内存中的存储
常见的浮点数:
3.14159
1E10
浮点数家族包括: float、double、long double 类型。
浮点数表示的范围:float.h中定义
3.1 一个例子
浮点数存储的例子:
int main() { int n = 9; float *pFloat = (float *)&n; printf("n的值为:%d\n",n); printf("*pFloat的值为:%f\n",*pFloat); *pFloat = 9.0; printf("num的值为:%d\n",n); printf("*pFloat的值为:%f\n",*pFloat); return 0; }
输出的结果是什么呢?
3.2 浮点数存储规则
num 和 *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?
要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。
详细解读:
根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:
(-1)^S * M * 2^E
(-1)^s表示符号位,当s=0,V为正数;当s=1,V为负数。
M表示有效数字,大于等于1,小于2。
2^E表示指数位。
举例来说:
十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^2 。
那么,按照上面V的格式,可以得出s=0,M=1.01,E=2。
十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。那么,s=1,M=1.01,E=2。
IEEE 754规定:
对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。
编辑
对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。
编辑
IEEE 754对有效数字M和指数E,还有一些特别规定。
前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。
IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。
至于指数E,情况就比较复杂。
首先,E为一个无符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间
数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即
10001001。
然后,指数E从内存中取出还可以再分成三种情况
E不全为0或不全为1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。
比如:
0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为
1.0*2^(-1),其阶码为-1+127=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进制表示形式为:
0 01111110 00000000000000000000000
E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,
有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。
E全为1
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);
好了,关于浮点数的表示规则,就说到这里。
解释前面的题目:
下面,让我们回到一开始的问题:为什么 0x00000009 还原成浮点数,就成了 0.000000 ?
首先,将 0x00000009 拆分,得到第一位符号位s=0,后面8位的指数 E=00000000 ,最后23位的有效数字M=000 0000 0000 0000 0000 1001。
9 -> 0000 0000 0000 0000 0000 0000 0000 1001
由于指数E全为0,所以符合上一节的第二种情况。因此,浮点数V就写成:
V=(-1)^0 × 0.00000000000000000001001×2^(-126)=1.001×2^(-146)
显然,V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000
再看例题的第二部分。
请问浮点数9.0,如何用二进制表示?还原成十进制又是多少?
首先,浮点数9.0等于二进制的1001.0,即1.001×2^3
9.0 -> 1001.0 ->(-1)^01.0012^3 -> s=0, M=1.001,E=3+127=130
那么,第一位的符号位s=0,有效数字M等于001后面再加20个0,凑满23位,指数E等于3+127=130,
即10000010。
所以,写成二进制形式,应该是s+E+M,即
0 10000010 001 0000 0000 0000 0000 0000
这个32位的二进制数,还原成十进制,正是 1091567616 。
这个32位的二进制数,还原成十进制,正是 1091567616 。