从零使用TensorFlow搭建CNN(卷积)神经网络

简介: 本节内容主要向大家介绍如何使用TensorFlow快速搭建自己的卷积神经网络,并通过cifar数据集训练验证。文章最后会有相关内容知识点的补给。
+关注继续查看

总览

本节内容主要向大家介绍如何使用TensorFlow快速搭建自己的卷积神经网络,并通过cifar数据集训练验证。文章最后会有相关内容知识点的补给。

数据集简介

Cifar-10 是由 Hinton 的学生 Alex Krizhevsky、Ilya Sutskever 收集的一个用于普适物体识别的计算机视觉数据集,它包含 60000 张 32 X 32 的 RGB 彩色图片,总共 10 个分类。其中,包括 50000 张用于训练集,10000 张用于测试集。

2345_image_file_copy_14.jpg

第三方库准备

import tensorflow as tf

import numpy as np
from matplotlib import pyplot as plt

该项目使用上述第三方库,大家提前下载需要提前下载好。

加载数据

cifar10 = tf.keras.datasets.cifar10
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

首次使用需要联网下载一段时间数据集,大家耐心等待下。

搭建cnn模型类以及相关方法

# 继承自tf.keras.Model
class Baseline(tf.keras.Model):
    def __init__(self):
        super(Baseline, self).__init__()
        # 第一层卷积
        self.c1 = tf.keras.layers.Conv2D(filters=6, kernel_size=(5, 5), padding='same')
        # 第一层BN
        self.b1 = tf.keras.layers.BatchNormalization()
        # 激活函数层
        self.a1 = tf.keras.layers.Activation('relu')
        # 池化层
        self.p1 = tf.keras.layers.MaxPool2D(pool_size=(2, 2), strides=2, padding='same')
        # Dropout层
        self.d1 = tf.keras.layers.Dropout(0.2)
        # 将卷积获得的网络拉平以便后序全连接层使用
        self.flatten = tf.keras.layers.Flatten()
        # 一层全连接
        self.f1 = tf.keras.layers.Dense(128, activation='relu')
        # 又一层dropout
        self.d2 = tf.keras.layers.Dropout(0.2)
        # 第二层全连接
        self.f2 = tf.keras.layers.Dense(10, activation='softmax')
        # 读入inputs数据,并进行操作返回
    def call(self, inputs):
        x = self.c1(inputs)
        x = self.b1(x)
        x = self.a1(x)
        x = self.p1(x)
        x = self.d1(x)
        x = self.flatten(x)
        x = self.f1(x)
        x = self.d2(x)
        y = self.f2(x)
        return y

训练模型

# 创建模型对象
model = Baseline()
# 指明优化器、损失函数、准确率计算函数
model.compile(optimizer=tf.keras.optimizers.Adam(),
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=[tf.keras.metrics.sparse_categorical_accuracy])
# 开始训练
history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1)
# 展示训练的过程
model.summary()

画图展示结果

# show
acc = history.history['sparse_categorical_accuracy']
val_acc = history.history['val_sparse_categorical_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
print(acc)
print(val_loss)

plt.figure(figsize=(8, 8))
plt.subplot(1, 2, 1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()

plt.subplot(1, 2, 2)
plt.plot(loss, label='Training loss')
plt.plot(val_loss, label='Validation loss')
plt.title('Training and Validation loss')
plt.legend()
plt.show()

分别展示了训练集和测试集上精确度、损失值的对比

项目整体代码

import tensorflow as tf

import numpy as np
from matplotlib import pyplot as plt

np.set_printoptions(threshold=np.inf)

cifar10 = tf.keras.datasets.cifar10
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0


class Baseline(tf.keras.Model):
    def __init__(self):
        super(Baseline, self).__init__()
        self.c1 = tf.keras.layers.Conv2D(filters=6, kernel_size=(5, 5), padding='same')
        self.b1 = tf.keras.layers.BatchNormalization()
        self.a1 = tf.keras.layers.Activation('relu')
        self.p1 = tf.keras.layers.MaxPool2D(pool_size=(2, 2), strides=2, padding='same')
        self.d1 = tf.keras.layers.Dropout(0.2)
        self.flatten = tf.keras.layers.Flatten()
        self.f1 = tf.keras.layers.Dense(128, activation='relu')
        self.d2 = tf.keras.layers.Dropout(0.2)
        self.f2 = tf.keras.layers.Dense(10, activation='softmax')

    def call(self, inputs):
        x = self.c1(inputs)
        x = self.b1(x)
        x = self.a1(x)
        x = self.p1(x)
        x = self.d1(x)
        x = self.flatten(x)
        x = self.f1(x)
        x = self.d2(x)
        y = self.f2(x)
        return y


model = Baseline()
model.compile(optimizer=tf.keras.optimizers.Adam(),
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=[tf.keras.metrics.sparse_categorical_accuracy])
history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1)
model.summary()

# show
acc = history.history['sparse_categorical_accuracy']
val_acc = history.history['val_sparse_categorical_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
print(acc)
print(val_loss)

plt.figure(figsize=(8, 8))
plt.subplot(1, 2, 1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()

plt.subplot(1, 2, 2)
plt.plot(loss, label='Training loss')
plt.plot(val_loss, label='Validation loss')
plt.title('Training and Validation loss')
plt.legend()
plt.show()

运行结果

image.jpeg

image.jpeg

image.jpeg

部分知识点整理

模型建立

  • tf.keras.models.Sequential([网络结构]) # 描述各层网洛Sequentail()可以认为是个容器,这个容器里封装了一个神经网络结构。在Sequential中要描述从输入层到输出层每一层的网络结构。
    每一层的网络结构可以是
  • 拉直层: tf.keras.layers.Flatten() ,这一层不含计算,只是形状转换,把输入特征拉直,变成一维数组
  • 全连接层:

tf.keras.layers.Dense(神经元个数,activation=“激活函数”,kernel_regularizer=哪种正则化),这一层告知神经元个数、使用什么激活函数、采用什么正则化方法 激活函数可以选择relu, softmax, sigmoid, tanh等

  • 正则化可以选择 tf.keras.regularizers.l1(), tf.keras.relularizers.l2()
  • 卷积神经网络层:tf.keras.layers.Conv2D(filters=卷积核个数,kernel_size=卷积核尺寸,strides=卷积步长, padding=“valid” or “same”)
  • 循环神经网络层:tf.keras.layers.LSTM()

model.compile

model.compile(optimizer=优化器,loss=损失函数,metrics=["准确率"])在这里告知训练时选择的优化器、损失函数、和评测指标。 这些参数都可以使用字符串形式或函数形式


optimizer: 引导神经网络更新参数

  • sgd or tf.keras.optimizer.SGD(lr=学习率,momentum=动量参数)
  • adagrad or tf.keras.optimizer.Adagrad(lr=学习率)
  • adadelta or tf.keras.optimizer.Adadelta(lr=学习率)
  • adam or tf.keras.optimizer.Adam(lr=学习率, beta_1=0.9, beta_2=0.999)

loss: 损失函数

  • mes or tf.keras.losses.MeanSquaredError()
  • sparse_categorical_crossentropy or
  • tf.keras.SparseCategoricalCrossentropy(from_logits=False)(是原始输出还是经过概率分布)

metrics:评测指标

  • accuracy:y_ 和 y 都是数值,如y_=[1] y=[1]
  • categorical_accuracy: y_和y都是独热码(概率分布),如y_=[0, 1, 0], y=[0.256, 0.695,0.048]
  • sparse_categorical_accuracy: y_是数值,y是独热码(概率分布),如y_=[1], y=[0.256,0.695, 0.048]

训练模型

 model.fit(训练集的输入特征,训练集的标签,batch_size= 每次喂入神经网络的样本数, epochs=迭代多少次数据集, validation_data=(测试集的输入特征,测试集的标签,), validation_split=从训练集划分多少比例给测试集,validation_freq=多少次epoch测试一次)

打印网络结构和参数统计

 model.summary()


目录
相关文章
|
2月前
|
机器学习/深度学习 算法 TensorFlow
【深度学习】实验14 使用CNN完成MNIST手写体识别(TensorFlow)
【深度学习】实验14 使用CNN完成MNIST手写体识别(TensorFlow)
39 0
|
12月前
|
机器学习/深度学习 算法 测试技术
从零开始构建:使用CNN和TensorFlow进行人脸特征检测
从零开始构建:使用CNN和TensorFlow进行人脸特征检测
114 0
从零开始构建:使用CNN和TensorFlow进行人脸特征检测
|
机器学习/深度学习 TensorFlow API
TensorFlow中CNN的两种padding方式“SAME”和“VALID”
TensorFlow中CNN的两种padding方式“SAME”和“VALID”
138 0
TensorFlow中CNN的两种padding方式“SAME”和“VALID”
|
机器学习/深度学习 数据采集 数据可视化
【DSW Gallery】Tensorflow 2构建CNN模型
本文基于TensorFlow2版本,构建了一个CNN网络,然后基于Mnist手写体数据集进行手写体的识别。本文从模型的定义,数据的加载,处理,模型的训练到最后的结果的分析以及可视化等方面提供了一个端到端的sample。用户可以基于本文了解使用TensorFlow2进行模型开发的整个流程。
【DSW Gallery】Tensorflow 2构建CNN模型
|
机器学习/深度学习 算法 JavaScript
CV之CNN:基于tensorflow框架采用CNN(改进的AlexNet,训练/评估/推理)卷积神经网络算法实现猫狗图像分类识别
CV之CNN:基于tensorflow框架采用CNN(改进的AlexNet,训练/评估/推理)卷积神经网络算法实现猫狗图像分类识别
CV之CNN:基于tensorflow框架采用CNN(改进的AlexNet,训练/评估/推理)卷积神经网络算法实现猫狗图像分类识别
|
机器学习/深度学习 PyTorch 测试技术
深度学习框架哪家强?MXNet称霸CNN、RNN和情感分析,TensorFlow仅擅长推断特征提取
深度学习框架哪家强?MXNet称霸CNN、RNN和情感分析,TensorFlow仅擅长推断特征提取
248 0
|
机器学习/深度学习 文字识别 算法
DL之CNN:基于CNN-RNN(GRU,2)算法(keras+tensorflow)实现不定长文本识别
DL之CNN:基于CNN-RNN(GRU,2)算法(keras+tensorflow)实现不定长文本识别
|
机器学习/深度学习 TensorFlow 算法框架/工具
TF之CNN:Tensorflow构建卷积神经网络CNN的简介、使用方法、应用之详细攻略
TF之CNN:Tensorflow构建卷积神经网络CNN的简介、使用方法、应用之详细攻略
|
机器学习/深度学习 测试技术 TensorFlow
(Tensorflow)手把手CNN入门:手写数字识别
手把手带你实战——《CNN入门:手写数字识别》!
4655 0
热门文章
最新文章
相关产品
机器翻译
推荐文章
更多