DNS查询原理

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: 我们访问网站、域名、调用接口,服务器或自己的电脑机器、浏览器都是先通过DNS查询,得到对应的IP地址,才能访问网站的,那DNS到底是怎样查询到真实网站接口的IP地址呢?一、DNS 服务器域名对应的 IP 地址,都保存在 DNS 服务器。我们输入域名,浏览器就会在后台,自动向 DNS 服务器发出请求,获取对应的 IP 地址。这就是 DNS 查询。举例来说,我输入 saas.koubei.com 这个

我们访问网站、域名、调用接口,服务器或自己的电脑机器、浏览器都是先通过DNS查询,得到对应的IP地址,才能访问网站的,那DNS到底是怎样查询到真实网站接口的IP地址呢?

一、DNS 服务器

域名对应的 IP 地址,都保存在 DNS 服务器。

我们输入域名,浏览器就会在后台,自动向 DNS 服务器发出请求,获取对应的 IP 地址。这就是 DNS 查询。

举例来说,我输入 saas.koubei.com 这个域名,浏览器就要向 DNS 服务器查询,它的 IP 地址是什么,然后向该 IP 发出访问请求。

网上有很多公用的 DNS 服务器,比如Cloudflare的1.1.1.1,谷歌的8.8.8.8,我们选择阿里提供的223.5.5.5 演示。

https://alidns.com/

二、dig 命令

命令行工具 dig 可以跟 DNS 服务器互动,我们就用它演示 DNS 查询。如果你还没有安装,可以搜一下安装方法,在 Linux、Macos系统下是非常容易的。

它的查询语法如下(美元符号$是命令行提示符)。

$ dig @[DNS 服务器] [域名]

向 223.5.5.5 查询域名,就执行下面的命令。

$ dig @223.5.5.5 saas.koubei.com

正常情况下,它会输出一大堆内容。

在其中找到 ANSWER SECTION 这个部分,它给出了查询的答案,

域名对应的 IP 地址是  203.119.169.43,当然这不是我们最终后端服务的ip,这里可以看到是CNAME解析到了统一接入层。

三、域名的树状结构

你可能会问,难道 DNS 服务器(比如 1.1.1.1)保存了世界上所有域名(包括二级域名、三级域名)的 IP 地址?

当然不是。DNS 是一个分布式系统,1.1.1.1 只是用户查询入口,它也需要再向其他 DNS 服务器查询,才能获得最终的 IP 地址。

要说清楚 DNS 完整的查询过程,就必须了解 域名是一个树状结构。

最顶层的域名是根域名(root),然后是顶级域名(top-level domain,简写 TLD),再是一级域名、二级域名、三级域名。

(1)根域名

所有域名的起点都是根域名,它写作一个点.,放在域名的结尾。因为这部分对于所有域名都是相同的,所以就省略不写了,比如example.com等同于example.com.(结尾多一个点)。

可以试试,任何一个域名结尾加一个点,浏览器都可以正常解读。

(2)顶级域名

根域名的下一级是顶级域名。它分成两种:通用顶级域名(gTLD,比如 .com 和 .net)和国别顶级域名(ccTLD,比如 .cn 和 .us)。

顶级域名由国际域名管理机构 ICANN 控制,它委托商业公司管理 gTLD,委托各国管理自己的国别域名。

(3)一级域名

一级域名就是你在某个顶级域名下面,自己注册的域名。比如,koubei.com就是在顶级域名.com下面注册的。

(4)二级域名

二级域名是一级域名的子域名,是域名拥有者自行设置的,不用得到许可。比如,saas 就是 koubei.com 的二级域名。

四、域名的逐级查询

这种树状结构的意义在于,只有上级域名,才知道下一级域名的 IP 地址,需要逐级查询。

每一级域名都有自己的 DNS 服务器,存放下级域名的 IP 地址。

所以,如果想要查询二级域名 saas.koubei.com 的 IP 地址,需要三个步骤。

  • 第一步,查询根域名服务器,获得顶级域名服务器 .com (又称 TLD 服务器)的 IP 地址。

  • 第二步,查询 TLD 服务器  .com ,获得一级域名服务器  koubei.com  的 IP 地址。

  • 第三步,查询一级域名服务器  koubei.com ,获得二级域名 saas 的 IP 地址。

下面依次演示这三个步骤。

五、根域名服务器

根域名服务器全世界一共有13台(都是服务器集群)。它们的域名和 IP 地址如下。

 

根域名服务器的 IP 地址是不变的,集成在操作系统里面。

操作系统会选其中一台,查询 TLD 服务器的 IP 地址。

$ dig @192.33.4.12 saas.koubei.com

上面示例中,我们选择192.33.4.12,向它发出查询,询问saas.koubei.com的 TLD 服务器的 IP 地址。

dig 命令的输出结果如下。


; <<>> DiG 9.10.6 <<>> @192.33.4.12 saas.koubei.com
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 46420
;; flags: qr rd; QUERY: 1, ANSWER: 0, AUTHORITY: 13, ADDITIONAL: 27
;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1232
;; QUESTION SECTION:
;saas.koubei.com.		IN	A

;; AUTHORITY SECTION:
com.			172800	IN	NS	b.gtld-servers.net.
com.			172800	IN	NS	c.gtld-servers.net.
com.			172800	IN	NS	f.gtld-servers.net.
com.			172800	IN	NS	e.gtld-servers.net.
com.			172800	IN	NS	l.gtld-servers.net.
com.			172800	IN	NS	g.gtld-servers.net.
com.			172800	IN	NS	d.gtld-servers.net.
com.			172800	IN	NS	i.gtld-servers.net.
com.			172800	IN	NS	j.gtld-servers.net.
com.			172800	IN	NS	k.gtld-servers.net.
com.			172800	IN	NS	a.gtld-servers.net.
com.			172800	IN	NS	m.gtld-servers.net.
com.			172800	IN	NS	h.gtld-servers.net.

;; ADDITIONAL SECTION:
m.gtld-servers.net.	172800	IN	A	192.55.83.30
l.gtld-servers.net.	172800	IN	A	192.41.162.30
k.gtld-servers.net.	172800	IN	A	192.52.178.30
j.gtld-servers.net.	172800	IN	A	192.48.79.30
i.gtld-servers.net.	172800	IN	A	192.43.172.30
h.gtld-servers.net.	172800	IN	A	192.54.112.30
g.gtld-servers.net.	172800	IN	A	192.42.93.30
f.gtld-servers.net.	172800	IN	A	192.35.51.30
e.gtld-servers.net.	172800	IN	A	192.12.94.30
d.gtld-servers.net.	172800	IN	A	192.31.80.30
c.gtld-servers.net.	172800	IN	A	192.26.92.30
b.gtld-servers.net.	172800	IN	A	192.33.14.30
a.gtld-servers.net.	172800	IN	A	192.5.6.30
m.gtld-servers.net.	172800	IN	AAAA	2001:501:b1f9::30
l.gtld-servers.net.	172800	IN	AAAA	2001:500:d937::30
k.gtld-servers.net.	172800	IN	AAAA	2001:503:d2d::30
j.gtld-servers.net.	172800	IN	AAAA	2001:502:7094::30
i.gtld-servers.net.	172800	IN	AAAA	2001:503:39c1::30
h.gtld-servers.net.	172800	IN	AAAA	2001:502:8cc::30
g.gtld-servers.net.	172800	IN	AAAA	2001:503:eea3::30
f.gtld-servers.net.	172800	IN	AAAA	2001:503:d414::30
e.gtld-servers.net.	172800	IN	AAAA	2001:502:1ca1::30
d.gtld-servers.net.	172800	IN	AAAA	2001:500:856e::30
c.gtld-servers.net.	172800	IN	AAAA	2001:503:83eb::30
b.gtld-servers.net.	172800	IN	AAAA	2001:503:231d::2:30
a.gtld-servers.net.	172800	IN	AAAA	2001:503:a83e::2:30

;; Query time: 214 msec
;; SERVER: 192.33.4.12#53(192.33.4.12)
;; WHEN: Fri Aug 26 15:34:19 CST 2022
;; MSG SIZE  rcvd: 843

因为它给不了 saas.koubei.com 的 IP 地址,所以输出结果中没有 ANSWER SECTION,只有一个 AUTHORITY SECTION,给出了com.的13台 TLD 服务器的域名。

下面还有一个 ADDITIONAL SECTION,给出了这13台 TLD 服务器的 IP 地址(包含 IPv4 和 IPv6 两个地址)。

六、TLD 服务器

有了 TLD 服务器的 IP 地址以后,我们再选一台接着查询。

$ dig @192.41.162.30 saas.koubei.com

上面示例中,192.41.162.30 是随便选的一台 .com 的 TLD 服务器,我们向它询问 saas.koubei.com 的 IP 地址。

返回结果如下。


; <<>> DiG 9.10.6 <<>> @192.41.162.30 saas.koubei.com
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 25411
;; flags: qr rd; QUERY: 1, ANSWER: 0, AUTHORITY: 4, ADDITIONAL: 13
;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;saas.koubei.com.		IN	A

;; AUTHORITY SECTION:
koubei.com.		172800	IN	NS	ns4.taobao.com.
koubei.com.		172800	IN	NS	ns5.taobao.com.
koubei.com.		172800	IN	NS	ns6.taobao.com.
koubei.com.		172800	IN	NS	ns7.taobao.com.

;; ADDITIONAL SECTION:
ns4.taobao.com.		172800	IN	AAAA	2401:b180:4100::4
ns4.taobao.com.		172800	IN	A	47.88.74.33
ns4.taobao.com.		172800	IN	A	47.88.74.35
ns5.taobao.com.		172800	IN	A	140.205.122.33
ns5.taobao.com.		172800	IN	A	140.205.122.34
ns5.taobao.com.		172800	IN	AAAA	2401:b180:4100::5
ns6.taobao.com.		172800	IN	A	140.205.122.35
ns6.taobao.com.		172800	IN	A	140.205.122.36
ns6.taobao.com.		172800	IN	AAAA	2401:b180:4100::6
ns7.taobao.com.		172800	IN	A	106.11.35.25
ns7.taobao.com.		172800	IN	A	106.11.35.26
ns7.taobao.com.		172800	IN	AAAA	2401:b180:4100::7

;; Query time: 211 msec
;; SERVER: 192.41.162.30#53(192.41.162.30)
;; WHEN: Fri Aug 26 15:37:42 CST 2022
;; MSG SIZE  rcvd: 363

它依然没有 ANSWER SECTION 的部分,只有 AUTHORITY SECTION,给出了一级域名 koubei.com 的4台 DNS 服务器。

下面的 ADDITIONAL SECTION 就是这4台 DNS 服务器对应的 IP 地址。

七、一级域名的 DNS 服务器

第三步,再向一级域名的 DNS 服务器查询二级域名的 IP 地址。

$ dig @47.88.74.33 saas.koubei.com

返回结果如下。


; <<>> DiG 9.10.6 <<>> @47.88.74.33 saas.koubei.com
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 14919
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1
;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;saas.koubei.com.		IN	A

;; ANSWER SECTION:
saas.koubei.com.	300	IN	CNAME	secgw-na61-na62.wagbridge.alibaba.tanx.com.

;; Query time: 198 msec
;; SERVER: 47.88.74.33#53(47.88.74.33)
;; WHEN: Fri Aug 26 15:40:17 CST 2022
;; MSG SIZE  rcvd: 100

这次终于有了 ANSWER SECTION,得到了最终的二级域名的地址,这里是做了CNAME解析到统一接入层。

至此,三个步骤的 DNS 查询全部完成。

八、DNS 服务器的种类

总结一下,上面一共提到了四种服务器。

  • 223.5.5.5
  • 根域名服务器
  • TLD 服务器
  • 一级域名服务器

它们都属于 DNS 服务器,都用来接受 DNS 查询。但是作用不一样,属于不同的类别。

8.1 递归 DNS 服务器

后三种服务器只用来查询下一级域名的 IP 地址,而 223.5.5.5 则把分步骤的查询过程自动化,方便用户一次性得到结果,所以它称为递归 DNS 服务器(recursive DNS server),即可以自动递归查询。

我们平常说的 DNS 服务器,一般都是指递归 DNS 服务器。它把 DNS 查询自动化了,只要向它查询就可以了。

它内部有缓存,可以保存以前查询的结果,下次再有人查询,就直接返回缓存里面的结果。所以它能加快查询,减轻源头 DNS 服务器的负担。

8.2 权威 DNS 服务器

一级域名服务器的正式名称叫做权威域名服务器(Authoritative Name Server)。

"权威"的意思是域名的 IP 地址由它给定,不像递归服务器自己做不了主。我们购买域名后,设置 DNS 服务器就是在设置该域名的权威服务器。

8.3 四种 DNS 服务器

综上所述,DNS 服务器可以分成四种:

  • 根域名服务器
  • TLD 服务器
  • 权威域名服务器
  • 递归域名服务器

它们的关系如下图。

 

知道了 DNS 查询的原理,完全可以自己写一个 DNS 的递归服务器,这是不难的。网上有很多参考资料,有兴趣的话,大家可以试试看。


内容做了修改,原文:https://www.ruanyifeng.com/blog/2022/08/dns-query.html

相关文章
|
23天前
|
存储 缓存 算法
HashMap深度解析:从原理到实战
HashMap,作为Java集合框架中的一个核心组件,以其高效的键值对存储和检索机制,在软件开发中扮演着举足轻重的角色。作为一名资深的AI工程师,深入理解HashMap的原理、历史、业务场景以及实战应用,对于提升数据处理和算法实现的效率至关重要。本文将通过手绘结构图、流程图,结合Java代码示例,全方位解析HashMap,帮助读者从理论到实践全面掌握这一关键技术。
72 13
|
2月前
|
运维 持续交付 云计算
深入解析云计算中的微服务架构:原理、优势与实践
深入解析云计算中的微服务架构:原理、优势与实践
81 1
|
3月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
67 3
|
4天前
|
存储 运维 负载均衡
Hologres 查询队列全面解析
Hologres V3.0引入查询队列功能,实现请求有序处理、负载均衡和资源管理,特别适用于高并发场景。该功能通过智能分类和调度,确保复杂查询不会垄断资源,保障系统稳定性和响应效率。在电商等实时业务中,查询队列优化了数据写入和查询处理,支持高效批量任务,并具备自动流控、隔离与熔断机制,确保核心业务不受干扰,提升整体性能。
29 9
|
8天前
|
存储 物联网 大数据
探索阿里云 Flink 物化表:原理、优势与应用场景全解析
阿里云Flink的物化表是流批一体化平台中的关键特性,支持低延迟实时更新、灵活查询性能、无缝流批处理和高容错性。它广泛应用于电商、物联网和金融等领域,助力企业高效处理实时数据,提升业务决策能力。实践案例表明,物化表显著提高了交易欺诈损失率的控制和信贷审批效率,推动企业在数字化转型中取得竞争优势。
50 14
|
9天前
|
存储 数据库 对象存储
新版本发布:查询更快,兼容更强,TDengine 3.3.4.3 功能解析
经过 TDengine 研发团队的精心打磨,TDengine 3.3.4.3 版本正式发布。作为时序数据库领域的领先产品,TDengine 一直致力于为用户提供高效、稳定、易用的解决方案。本次版本更新延续了一贯的高标准,为用户带来了多项实用的新特性,并对系统性能进行了深度优化。
20 3
|
17天前
|
网络协议 安全 网络安全
探索网络模型与协议:从OSI到HTTPs的原理解析
OSI七层网络模型和TCP/IP四层模型是理解和设计计算机网络的框架。OSI模型包括物理层、数据链路层、网络层、传输层、会话层、表示层和应用层,而TCP/IP模型则简化为链路层、网络层、传输层和 HTTPS协议基于HTTP并通过TLS/SSL加密数据,确保安全传输。其连接过程涉及TCP三次握手、SSL证书验证、对称密钥交换等步骤,以保障通信的安全性和完整性。数字信封技术使用非对称加密和数字证书确保数据的机密性和身份认证。 浏览器通过Https访问网站的过程包括输入网址、DNS解析、建立TCP连接、发送HTTPS请求、接收响应、验证证书和解析网页内容等步骤,确保用户与服务器之间的安全通信。
74 1
|
2月前
|
运维 持续交付 虚拟化
深入解析Docker容器化技术的核心原理
深入解析Docker容器化技术的核心原理
59 1
|
2月前
|
算法 Java 数据库连接
Java连接池技术,从基础概念出发,解析了连接池的工作原理及其重要性
本文详细介绍了Java连接池技术,从基础概念出发,解析了连接池的工作原理及其重要性。连接池通过复用数据库连接,显著提升了应用的性能和稳定性。文章还展示了使用HikariCP连接池的示例代码,帮助读者更好地理解和应用这一技术。
64 1
|
2月前
|
存储 供应链 算法
深入解析区块链技术的核心原理与应用前景
深入解析区块链技术的核心原理与应用前景
65 0

相关产品

  • 云解析DNS
  • 推荐镜像

    更多
    下一篇
    开通oss服务