JAVA8 JVM内存结构变了,永久代到元空间

简介: JAVA8 JVM内存结构变了,永久代到元空间

在文章《JVM之内存结构详解》中我们描述了Java7以前的JVM内存结构,但在Java8和以后版本中JVM的内存结构慢慢发生了变化。如果在网络上搜索JVM内存结构,90%的可能会搜到Java7及以前的内存图,本篇文章将会对JVM内存结构再次细化,深入理解Java8之后的内部变化。


JVM内存结构的细化


再来看一下《JVM之内存结构详解》中的内存结构图。


aHR0cDovL3d3dy5jaG91cGFuZ3hpYS5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMTkvMTAvMTU3MTM2MzMwOTUzNC5qcGc.png


为了更细化的讲解,我们将该图进行进一步的优化调整。针对java7及以前版本的细化。



aHR0cDovL3d3dy5jaG91cGFuZ3hpYS5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMTkvMTAvanZtLXN0cnVjdHVyZS0xLmpwZw.png



看出变化了吗?堆和方法区连在了一起,但这并不能说堆和方法区是一起的,它们在逻辑上依旧是分开的。但在物理上来说,它们又是连续的一块内存。也就是说,方法区和前面讲到的Eden和老年代是连续的。

aHR0cDovL3d3dy5jaG91cGFuZ3hpYS5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMTkvMTAvanZtLXN0cnVjdHVyZS0yLmpwZw.png

在继续进行下去之前,我们先来理解两个概念:规范和实现。


规范和实现


针对Java虚拟机的实现有专门的《Java虚拟机规范》,在遵守规范的前提下,不同的厂商会对虚拟机进行不同的实现。 就好比开发的过程中定义了接口,具体的接口实现大家可以根据不同的业务需求进行实现。


我们通常使用的Java SE都是由Sun JDK和OpenJDK所提供,这也是应用最广泛的版本。而该版本使用的VM就是HotSpot VM。通常情况下,我们所讲的java虚拟机指的就是HotSpot的版本。


永久代(PermGen)


上面理解了规范和实现之后,来看认识一个概念“永久代(Permanet Generation,也称PermGen)”。对于习惯了在HotSpot虚拟机上开发、部署的程序员来说,很多都愿意将方法区称作永久代。


本质上来讲两者并不等价,仅因为Hotspot将GC分代扩展至方法区,或者说使用永久代来实现方法区。在其他虚拟机上是没有永久代的概念的。也就是说方法区是规范,永久代是Hotspot针对该规范进行的实现。


理解上面的概念之后,我们对Java7及以前版本的堆和方法区的构造再进行一下变动。


aHR0cDovL3d3dy5jaG91cGFuZ3hpYS5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMTkvMTAvanZtLXN0cnVjdHVyZS0zLmpwZw.png


再重复一遍就是对Java7及以前版本的Hotspot中方法区位于永久代中。同时,永久代和堆是相互隔离的,但它们使用的物理内存是连续的。


永久代的垃圾收集是和老年代捆绑在一起的,因此无论谁满了,都会触发永久代和老年代的垃圾收集。


但在Java7中永久代中存储的部分数据已经开始转移到Java Heap或Native Memory中了。比如,符号引用(Symbols)转移到了Native Memory;字符串常量池(interned strings)转移到了Java Heap;类的静态变量(class statics)转移到了Java Heap。


然后,在Java8中,时代变了,Hotspot取消了永久代。永久代真的成了永久的记忆。永久代的参数-XX:PermSize和-XX:MaxPermSize也随之失效。


元空间(Metaspace)


对于Java8,HotSpots取消了永久代,那么是不是就没有方法区了呢?当然不是,方法区只是一个规范,只不过它的实现变了。


在Java8中,元空间(Metaspace)登上舞台,方法区存在于元空间(Metaspace)。同时,元空间不再与堆连续,而且是存在于本地内存(Native memory)。


aHR0cDovL3d3dy5jaG91cGFuZ3hpYS5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMTkvMTAvanZtLXN0cnVjdHVyZS00LmpwZw.png



本地内存(Native memory),也称为C-Heap,是供JVM自身进程使用的。当Java Heap空间不足时会触发GC,但Native memory空间不够却不会触发GC。



aHR0cDovL3d3dy5jaG91cGFuZ3hpYS5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMTkvMTAvanZtLXN0cnVjdHVyZS01LmpwZw.png


针对Java8的调整,我们再次对内存结构图进行调整。


元空间存在于本地内存,意味着只要本地内存足够,它不会出现像永久代中“java.lang.OutOfMemoryError: PermGen space”这种错误。看上图中的方法区,是不是“膨胀”了。


默认情况下元空间是可以无限使用本地内存的,但为了不让它如此膨胀,JVM同样提供了参数来限制它使用的使用。


-XX:MetaspaceSize,class metadata的初始空间配额,以bytes为单位,达到该值就会触发垃圾收集进行类型卸载,同时GC会对该值进行调整:如果释放了大量的空间,就适当的降低该值;如果释放了很少的空间,那么在不超过MaxMetaspaceSize(如果设置了的话),适当的提高该值。

-XX:MaxMetaspaceSize,可以为class metadata分配的最大空间。默认是没有限制的。

-XX:MinMetaspaceFreeRatio,在GC之后,最小的Metaspace剩余空间容量的百分比,减少为class metadata分配空间导致的垃圾收集。

-XX:MaxMetaspaceFreeRatio,在GC之后,最大的Metaspace剩余空间容量的百分比,减少为class metadata释放空间导致的垃圾收集。


永久代为什么被替换了


思考一下,为什么使用元空间替换永久代?


表面上看是为了避免OOM异常。因为通常使用PermSize和MaxPermSize设置永久代的大小就决定了永久代的上限,但是不是总能知道应该设置为多大合适, 如果使用默认值很容易遇到OOM错误。


当使用元空间时,可以加载多少类的元数据就不再由MaxPermSize控制, 而由系统的实际可用空间来控制。


更深层的原因还是要合并HotSpot和JRockit的代码,JRockit从来没有所谓的永久代,也不需要开发运维人员设置永久代的大小,但是运行良好。同时也不用担心运行性能问题了,在覆盖到的测试中, 程序启动和运行速度降低不超过1%,但是这点性能损失换来了更大的安全保障。

目录
相关文章
|
1月前
|
安全 Java 程序员
深入理解Java内存模型与并发编程####
本文旨在探讨Java内存模型(JMM)的复杂性及其对并发编程的影响,不同于传统的摘要形式,本文将以一个实际案例为引子,逐步揭示JMM的核心概念,包括原子性、可见性、有序性,以及这些特性在多线程环境下的具体表现。通过对比分析不同并发工具类的应用,如synchronized、volatile关键字、Lock接口及其实现等,本文将展示如何在实践中有效利用JMM来设计高效且安全的并发程序。最后,还将简要介绍Java 8及更高版本中引入的新特性,如StampedLock,以及它们如何进一步优化多线程编程模型。 ####
34 0
|
13天前
|
存储 Java 程序员
【JVM】——JVM运行机制、类加载机制、内存划分
JVM运行机制,堆栈,程序计数器,元数据区,JVM加载机制,双亲委派模型
|
1月前
|
存储 监控 算法
Java内存管理深度剖析:从垃圾收集到内存泄漏的全面指南####
本文深入探讨了Java虚拟机(JVM)中的内存管理机制,特别是垃圾收集(GC)的工作原理及其调优策略。不同于传统的摘要概述,本文将通过实际案例分析,揭示内存泄漏的根源与预防措施,为开发者提供实战中的优化建议,旨在帮助读者构建高效、稳定的Java应用。 ####
41 8
|
1月前
|
存储 监控 算法
深入探索Java虚拟机(JVM)的内存管理机制
本文旨在为读者提供对Java虚拟机(JVM)内存管理机制的深入理解。通过详细解析JVM的内存结构、垃圾回收算法以及性能优化策略,本文不仅揭示了Java程序高效运行背后的原理,还为开发者提供了优化应用程序性能的实用技巧。不同于常规摘要仅概述文章大意,本文摘要将简要介绍JVM内存管理的关键点,为读者提供一个清晰的学习路线图。
|
1月前
|
存储 算法 Java
Java 内存管理与优化:掌控堆与栈,雕琢高效代码
Java内存管理与优化是提升程序性能的关键。掌握堆与栈的运作机制,学习如何有效管理内存资源,雕琢出更加高效的代码,是每个Java开发者必备的技能。
59 5
|
1月前
|
存储 算法 Java
Java内存管理深度解析####
本文深入探讨了Java虚拟机(JVM)中的内存分配与垃圾回收机制,揭示了其高效管理内存的奥秘。文章首先概述了JVM内存模型,随后详细阐述了堆、栈、方法区等关键区域的作用及管理策略。在垃圾回收部分,重点介绍了标记-清除、复制算法、标记-整理等多种回收算法的工作原理及其适用场景,并通过实际案例分析了不同GC策略对应用性能的影响。对于开发者而言,理解这些原理有助于编写出更加高效、稳定的Java应用程序。 ####
|
1月前
|
安全 Java 程序员
Java内存模型的深入理解与实践
本文旨在深入探讨Java内存模型(JMM)的核心概念,包括原子性、可见性和有序性,并通过实例代码分析这些特性在实际编程中的应用。我们将从理论到实践,逐步揭示JMM在多线程编程中的重要性和复杂性,帮助读者构建更加健壮的并发程序。
|
2月前
|
JSON Java 程序员
Java|如何用一个统一结构接收成员名称不固定的数据
本文介绍了一种 Java 中如何用一个统一结构接收成员名称不固定的数据的方法。
30 3
|
2月前
|
算法 Java 开发者
Java内存管理与垃圾回收机制深度剖析####
本文深入探讨了Java虚拟机(JVM)的内存管理机制,特别是其垃圾回收机制的工作原理、算法及实践优化策略。不同于传统的摘要概述,本文将以一个虚拟的“城市环卫系统”为比喻,生动形象地揭示Java内存管理的奥秘,旨在帮助开发者更好地理解并调优Java应用的性能。 ####
|
1月前
|
存储 监控 算法
Java内存管理的艺术:深入理解垃圾回收机制####
本文将引领读者探索Java虚拟机(JVM)中垃圾回收的奥秘,解析其背后的算法原理,通过实例揭示调优策略,旨在提升Java开发者对内存管理能力的认知,优化应用程序性能。 ####
46 0

热门文章

最新文章