开发者社区> Matlab科研工作室> 正文
阿里云
为了无法计算的价值
打开APP
阿里云APP内打开

含电热联合系统的微电网运行优化附Matlab代码

简介: 含电热联合系统的微电网运行优化附Matlab代码
+关注继续查看

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测 雷达通信 无线传感器

信号处理 图像处理 路径规划 元胞自动机 无人机 电力系统

⛄ 内容介绍

在当前能源互联网迅速发展及电热联系日渐紧密的环境下,提出基于电热联合调度的区域并网型微电网运行优化模型.综合网内储能特性,分时电价,电热负荷与分布式电源的时序特征,以包含风机,光伏电池,热电联产系统,电锅炉,燃料电池和储能系统的并网型微电网为例,采用Cplex优化软件求得调度周期内各微电源最佳出力及总运行成本,并与两种常见电热调度方式进行比较.仿真算例表明:联合调度模型能实现电热统一协调调度并降低微电网运行成本.该模型可为电热之间能源互联及规划运营提供参考.

⛄ 部分代码

function f = initialize_variables(N, M, V, min_range, max_range, time, Zall, ComC0)


min = min_range;

max = max_range;


% K is the total number of array elements. For ease of computation decision

% variables and objective functions are concatenated to form a single

% array. For crossover and mutation only the decision variables are used

% while for selection, only the objective variable are utilized.

number_of_decision_variables.c =  V(1,1);

number_of_decision_variables.t =  V(2,1);

K = M + 2 * V(1,1) + 2 * V(2,1);

StepComC = 1; %变量的离散化

StepT1 = 0.025;

StepT2 = 0.025;

%% Initialize each chromosome

% For each chromosome perform the following (N is the population size)

for i = 1 : N

     for j= 1 : number_of_decision_variables.c

              f(i,j) = min.c(j,1) + (max.c(j,1) - min.c(j,1))*rand(1);

              f(i,j + number_of_decision_variables.c) = min.c(j,2) + (max.c(j,2) - min.c(j,2))*rand(1);

           %f(i,j)离散化

              ComCC(j)= f(i,j);

                ComCC1(j) = abs(ComCC(j)) / StepComC;

                %Tap1 = Tap ./ StepTap;

                ComCC2(j) = fix(ComCC1(j)); %商

                ComCC3(j) = abs(ComCC(j)) - ComCC2(j) * StepComC;%余

                ComCC2(j) =  ComCC2(j) *  StepComC;

                %Tap = Tap1 - fix(Tap1);

                if ComCC3(j) > (StepComC / 2)

                  ComCC3(j) = StepComC - ComCC3(j);

                  ComCC2(j) = ComCC2(j) + StepComC;

                end

               if f(i,j)>0

                f(i,j) = ComCC2(j);

               else

                f(i,j) = - ComCC2(j); 

               end

           %检验f(i,j)中无重复    

               pf(1,:) = f(i,1:number_of_decision_variables.c);

               for w = 1 : number_of_decision_variables.c

                   for ww =  (w + 1) : number_of_decision_variables.c

                       while f(i,w) == pf(1,ww)

                             f(i,w) = min.c(j,1) + (max.c(j,1) - min.c(j,1))*rand(1);

                             ComCC(j)= f(i,w);

                             ComCC1(j) = abs(ComCC(j)) / StepComC;

                            %Tap1 = Tap ./ StepTap;

                            ComCC2(j) = fix(ComCC1(j)); %商

                            ComCC3(j) = abs(ComCC(j)) - ComCC2(j) * StepComC;%余

                            ComCC2(j) =  ComCC2(j) *  StepComC;

                            %Tap = Tap1 - fix(Tap1);

                        if ComCC3(j) > (StepComC / 2)

                            ComCC3(j) = StepComC - ComCC3(j);

                            ComCC2(j) = ComCC2(j) + StepComC;

                        end

                         if f(i,w)>0

                          f(i,w) = ComCC2(j);

                         else

                          f(i,w) = - ComCC2(j); 

                         end

                       end

                    end

               end             

               %f(i,j + number_of_decision_variables)离散化

                 ComCC(j)= f(i,j + number_of_decision_variables.c);

                ComCC1(j) = abs(ComCC(j)) / StepComC;

                %Tap1 = Tap ./ StepTap;

                ComCC2(j) = fix(ComCC1(j)); %商

                ComCC3(j) = abs(ComCC(j)) - ComCC2(j) * StepComC;%余

                ComCC2(j) =  ComCC2(j) *  StepComC;

                %Tap = Tap1 - fix(Tap1);

                if ComCC3(j) > (StepComC / 2)

                  ComCC3(j) = StepComC - ComCC3(j);

                  ComCC2(j) = ComCC2(j) + StepComC;

                end

               if f(i,j + number_of_decision_variables.c)>0

                f(i,j + number_of_decision_variables.c) = ComCC2(j);

               else

                f(i,j + number_of_decision_variables.c) = - ComCC2(j); 

               end

     end 

     

    for j= 1 : number_of_decision_variables.t

              f(i,j + 2 * V(1,1)) = min.t(j,1) + (max.t(j,1) - min.t(j,1))*rand(1);

              f(i,j + 2 * V(1,1) + number_of_decision_variables.t) = min.t(j,2) + (max.t(j,2) - min.t(j,2))*rand(1);

           %f(i,j)离散化

              ComCC(j)= f(i,j + 2 * V(1,1));

                ComCC1(j) = abs(ComCC(j)) / StepT1;

                %Tap1 = Tap ./ StepTap;

                ComCC2(j) = fix(ComCC1(j)); %商

                ComCC3(j) = abs(ComCC(j)) - ComCC2(j) * StepT1;%余

                ComCC2(j) =  ComCC2(j) *  StepT1;

                %Tap = Tap1 - fix(Tap1);

                if ComCC3(j) > (StepT1 / 2)

                  ComCC3(j) = StepT1 - ComCC3(j);

                  ComCC2(j) = ComCC2(j) + StepT1;

                end

               if f(i,j)>0

                f(i,j + 2 * V(1,1)) = ComCC2(j);

               else

                f(i,j + 2 * V(1,1)) = - ComCC2(j); 

               end                 

               %f(i,j + 2 * V(1,1) + number_of_decision_variables)离散化

                 ComCC(j)= f(i,j + 2 * V(1,1) + number_of_decision_variables.t);

                ComCC1(j) = abs(ComCC(j)) / StepT2;

                %Tap1 = Tap ./ StepTap;

                ComCC2(j) = fix(ComCC1(j)); %商

                ComCC3(j) = abs(ComCC(j)) - ComCC2(j) * StepT2;%余

                ComCC2(j) =  ComCC2(j) *  StepT2;

                %Tap = Tap1 - fix(Tap1);

                if ComCC3(j) > (StepT2 / 2)

                  ComCC3(j) = StepT2 - ComCC3(j);

                  ComCC2(j) = ComCC2(j) + StepT2;

                end

               if f(i,j + 2 * V(1,1) + number_of_decision_variables.t)>0

                f(i,j + 2 * V(1,1) + number_of_decision_variables.t) = ComCC2(j);

               else

                f(i,j + 2 * V(1,1) + number_of_decision_variables.t) = - ComCC2(j); 

               end              

    end    

         f(i, 2 * V(1,1) + 2 * V(2,1) + 1 : K) = evaluate_objective(f(i,:),M ,V ,time, Zall, ComC0);

end


⛄ 运行结果

image

image

⛄ 参考文献

[1]李正茂, 张峰, 梁军,等. 含电热联合系统的微电网运行优化[J]. 中国电机工程学报, 2015, 35(14):3569-3576.

⛄ Matlab代码关注

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
基于纳什谈判理论的风–光–氢多主体能源系统合作运行方法(Matlab代码实现)
基于纳什谈判理论的风–光–氢多主体能源系统合作运行方法(Matlab代码实现)
0 0
微电网经济优化运行(光伏、储能、柴油机)(Matlab代码实现)
微电网经济优化运行(光伏、储能、柴油机)(Matlab代码实现)
0 0
【电动车】主动配电网多源协同运行优化研究——大规模电动汽车的蒙特卡洛模拟(Matlab代码实现)
【电动车】主动配电网多源协同运行优化研究——大规模电动汽车的蒙特卡洛模拟(Matlab代码实现)
0 0
碳交易机制下考虑需求响应的综合能源系统优化运行(Matlab代码实现)
碳交易机制下考虑需求响应的综合能源系统优化运行(Matlab代码实现)
0 0
【电动车】主动配电网多源协同运行优化研究——大规模电动汽车的蒙特卡洛模拟(Matlab代码实现)
【电动车】主动配电网多源协同运行优化研究——大规模电动汽车的蒙特卡洛模拟(Matlab代码实现)
0 0
基于多能互补的热电联供型微网优化运行(Matlab代码实现)
基于多能互补的热电联供型微网优化运行(Matlab代码实现)
0 0
基于多能互补的热电联供型微网优化运行(Matlab代码实现)
基于多能互补的热电联供型微网优化运行(Matlab代码实现)
0 0
【电力系统】基于主从博弈理论的共享储能与综合能源微网优化运行研究附matlab代码
【电力系统】基于主从博弈理论的共享储能与综合能源微网优化运行研究附matlab代码
0 0
【电力系统】碳交易机制下考虑需求响应的综合能源系统优化运行附matlab代码
【电力系统】碳交易机制下考虑需求响应的综合能源系统优化运行附matlab代码
0 0
【火电机组、风能、储能】高比例风电电力系统储能运行及配置分析附Matlab代码
【火电机组、风能、储能】高比例风电电力系统储能运行及配置分析附Matlab代码
0 0
+关注
Matlab科研工作室
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题关注公众号 天天Matlab。
文章
问答
文章排行榜
最热
最新
相关电子书
更多
高性能计算--EHPC工业仿真最佳实践
立即下载
探索互联数据的奥秘——图数据库GDB
立即下载
当可视化遇见了微隔离
立即下载