利用Python实现NBA球员分析绘制数据可视化图表

简介: 1.爬虫获取2.爬虫获取怎么爬 ①获取地址 ②请求网站 requests ③获取数据 分析数据3.绘制一个可视化图表4.渲染图标

1.爬虫获取
2.爬虫获取怎么爬
①获取地址
②请求网站 requests
③获取数据 分析数据
3.绘制一个可视化图表
4.渲染图标

import requests #对目标网址发送请求
from lxml import etree
#获取地址
url = 'https://nba.hupu.com/players/kobebryant-151.html'
resp = requests.get(url)
#获取数据
resp_html = etree.HTML(resp.text)
#获取赛季
list_1=resp_html.xpath('//*[@id="in_box"]/div[1]/div[1]/table[2]/tbody/tr/td[1]/text()')
#拆除第一个数据
sea_list1=list_1[1:]
print(sea_list1)

#得分
list_18=resp_html.xpath('//*[@id="in_box"]/div[1]/div[1]/table[2]/tbody/tr/td[18]/text()')
sea_list2=list_18[1:]
print(sea_list2)

from pyecharts.charts import Line
from pyecharts import options as opts
#绘制折线图的方法
line=Line()
#设置x轴的数据
line.add_xaxis(['{}赛季'.format(i) for i in sea_list1])
#设置y轴的数据
line.add_yaxis('场均得分',sea_list2)
#渲染图标
line.render('科比html')
相关文章
|
1月前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费模式分析的深度学习模型
使用Python实现智能食品消费模式分析的深度学习模型
123 70
|
1月前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
104 10
|
1月前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费习惯分析的深度学习模型
使用Python实现智能食品消费习惯分析的深度学习模型
142 68
|
29天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费市场分析的深度学习模型
使用Python实现智能食品消费市场分析的深度学习模型
113 36
|
10天前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控
|
23天前
|
数据可视化 算法 数据挖掘
Python量化投资实践:基于蒙特卡洛模拟的投资组合风险建模与分析
蒙特卡洛模拟是一种利用重复随机抽样解决确定性问题的计算方法,广泛应用于金融领域的不确定性建模和风险评估。本文介绍如何使用Python和EODHD API获取历史交易数据,通过模拟生成未来价格路径,分析投资风险与收益,包括VaR和CVaR计算,以辅助投资者制定合理决策。
69 15
|
27天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费趋势分析的深度学习模型
使用Python实现智能食品消费趋势分析的深度学习模型
107 18
|
25天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
64 8
|
1月前
|
数据采集 分布式计算 大数据
构建高效的数据管道:使用Python进行ETL任务
在数据驱动的世界中,高效地处理和移动数据是至关重要的。本文将引导你通过一个实际的Python ETL(提取、转换、加载)项目,从概念到实现。我们将探索如何设计一个灵活且可扩展的数据管道,确保数据的准确性和完整性。无论你是数据工程师、分析师还是任何对数据处理感兴趣的人,这篇文章都将成为你工具箱中的宝贵资源。
|
2月前
|
测试技术 开发者 Python
使用Python解析和分析源代码
本文介绍了如何使用Python的`ast`模块解析和分析Python源代码,包括安装准备、解析源代码、分析抽象语法树(AST)等步骤,展示了通过自定义`NodeVisitor`类遍历AST并提取信息的方法,为代码质量提升和自动化工具开发提供基础。
65 8