Linux —— 进程的控制(3)

简介: Linux —— 进程的控制(3)

四、进程程序替换

1.替换原理

       用fork创建子进程后执行的是和父进程相同的程序(但有可能执行不同的代码分支),子进程往往要调用一种exec函数以执行另一个程序。当进程调用一种exec函数时,该进程的用户空间代码和数据完全被新程序替换,从新程序的启动例程开始执行。调用exec并不创建新进程,所以调用exec前后该进程的id并未改变。

1ecd1b2606ed46e9956a89f231c9802c.png

  从上图可以看出,进程程序替换前后,进程本身并没有发生任何变化,只是所执行的代码发什么改变。


如果子进程进行程序替换,会影响父进程的代码和数据吗?


       不会,首先进程是具有独立性的,虽然子进程共享父进程的代码和数据,但是由于进行了函数替换,发生了代码和数据的修改,此时就会进行写时拷贝。所有子进程进行程序替换时,并不会影响父进程的代码和数据。

2.替换函数

其实有六种以exec开头的函数,统称exec函数: 他们所需的头文件均为#include <unistd.h>

1.execl函数

int execl(const char *path, const char *arg, ...);
// path --- 可执行程序的路径
// arg --- 可变参数列表,表示你要如何执行这个程序,并以NULL结尾
// 例如:
execl("/usr/bin/ls", "ls", "-a", "-l", NULL);

2.execlp函数

int execlp(const char *file, const char *arg, ...);
// file --- 可执行程序的名字
// arg --- 可变参数列表,表示你要如何执行这个程序,并以NULL结尾
// 例如:
execlp("ls", "ls", "-a", "-l", NULL);

3.execle函数

int execle(const char *path, const char *arg, ..., char * const envp[]);
// path --- 可执行程序的路径
// arg ---  可变参数列表,表示你要如何执行这个程序,并以NULL结尾
// envp --- 自己维护的环境变量
// 例如:
char* envp[] = { "Myval=12345", NULL };
execle("./myexe", "myexe", NULL, Myval);

4.execv函数

int execv(const char *path, char *const argv[]);
// path --- 你要执行程序的路径
// argv --- 指针数组,数组当中的内容表示你要如何执行这个程序,数组以NULL结尾
// 例如:
char* argv[] = { "ls", "-a", "-l", NULL };
execv("/usr/bin/ls", argv);

5.execvp函数

int execvp(const char *file, char *const argv[]);
// file --- 你要执行程序的名字
// argv --- 指针数组,数组当中的内容表示你要如何执行这个程序,数组以NULL结尾
// 例如:
char* argv[] = { "ls", "-a", "-l", NULL };
execvp("ls", argv);

6.execve函数

int execvpe(const char *file, char *const argv[], char *const envp[]);
// file --- 你要执行程序的路径
// argv --- 指针数组,数组当中的内容表示你要如何执行这个程序,数组以NULL结尾
// envp --- 自己维护的环境变量
//例如:
char* argv[] = { "mycmd", NULL };
char* envp[] = { "Myval=12345", NULL };
execve("./myexe", argv, envp);

3.函数解释

这些函数如果调用成功则加载新的程序从启动代码开始执行,不再返回。

如果调用出错则返回-1

所以exec函数只有出错的返回值而没有成功的返回值。也就是说,exec系列函数只要返回了,就意味着调用失败

4.命名理解

这些函数原型看起来很容易混,但只要掌握了规律就很好记。

  • l(list) : 表示参数采用列表
  • v(vector) : 参数用数组
  • p(path) : 有p自动搜索环境变量PATH
  • e(env) : 表示自己维护环境变量

image.png

  事实上,只有execve才是真正的系统调用,其它五个函数最终都是调用的execve,所以execve在man手册的第2节,而其它五个函数在man手册的第3节,也就是说其他五个函数实际上是对系统调用execve进行了封装,以满足不同用户的不同调用场景的。


下图为exec系列函数族之间的关系:

1ecd1b2606ed46e9956a89f231c9802c.png

目录
相关文章
|
17天前
|
存储 Linux API
【Linux进程概念】—— 操作系统中的“生命体”,计算机里的“多线程”
在计算机系统的底层架构中,操作系统肩负着资源管理与任务调度的重任。当我们启动各类应用程序时,其背后复杂的运作机制便悄然展开。程序,作为静态的指令集合,如何在系统中实现动态执行?本文带你一探究竟!
【Linux进程概念】—— 操作系统中的“生命体”,计算机里的“多线程”
|
3月前
|
算法 Linux 调度
深入理解Linux操作系统的进程管理
本文旨在探讨Linux操作系统中的进程管理机制,包括进程的创建、执行、调度和终止等环节。通过对Linux内核中相关模块的分析,揭示其高效的进程管理策略,为开发者提供优化程序性能和资源利用率的参考。
133 1
|
1月前
|
存储 网络协议 Linux
【Linux】进程IO|系统调用|open|write|文件描述符fd|封装|理解一切皆文件
本文详细介绍了Linux中的进程IO与系统调用,包括 `open`、`write`、`read`和 `close`函数及其用法,解释了文件描述符(fd)的概念,并深入探讨了Linux中的“一切皆文件”思想。这种设计极大地简化了系统编程,使得处理不同类型的IO设备变得更加一致和简单。通过本文的学习,您应该能够更好地理解和应用Linux中的进程IO操作,提高系统编程的效率和能力。
77 34
|
13天前
|
Linux
Linux:守护进程(进程组、会话和守护进程)
守护进程在 Linux 系统中扮演着重要角色,通过后台执行关键任务和服务,确保系统的稳定运行。理解进程组和会话的概念,是正确创建和管理守护进程的基础。使用现代的 `systemd` 或传统的 `init.d` 方法,可以有效地管理守护进程,提升系统的可靠性和可维护性。希望本文能帮助读者深入理解并掌握 Linux 守护进程的相关知识。
28 7
|
12天前
|
Linux Shell
Linux 进程前台后台切换与作业控制
进程前台/后台切换及作业控制简介: 在 Shell 中,启动的程序默认为前台进程,会占用终端直到执行完毕。例如,执行 `./shella.sh` 时,终端会被占用。为避免不便,可将命令放到后台运行,如 `./shella.sh &`,此时终端命令行立即返回,可继续输入其他命令。 常用作业控制命令: - `fg %1`:将后台作业切换到前台。 - `Ctrl + Z`:暂停前台作业并放到后台。 - `bg %1`:让暂停的后台作业继续执行。 - `kill %1`:终止后台作业。 优先级调整:
32 5
|
12天前
|
Linux 应用服务中间件 nginx
Linux 进程管理基础
Linux 进程是操作系统中运行程序的实例,彼此隔离以确保安全性和稳定性。常用命令查看和管理进程:`ps` 显示当前终端会话相关进程;`ps aux` 和 `ps -ef` 显示所有进程信息;`ps -u username` 查看特定用户进程;`ps -e | grep &lt;进程名&gt;` 查找特定进程;`ps -p &lt;PID&gt;` 查看指定 PID 的进程详情。终止进程可用 `kill &lt;PID&gt;` 或 `pkill &lt;进程名&gt;`,强制终止加 `-9` 选项。
20 3
|
1月前
|
消息中间件 Linux C++
c++ linux通过实现独立进程之间的通信和传递字符串 demo
的进程间通信机制,适用于父子进程之间的数据传输。希望本文能帮助您更好地理解和应用Linux管道,提升开发效率。 在实际开发中,除了管道,还可以根据具体需求选择消息队列、共享内存、套接字等其他进程间通信方
68 16
|
2月前
|
消息中间件 Linux
Linux:进程间通信(共享内存详细讲解以及小项目使用和相关指令、消息队列、信号量)
通过上述讲解和代码示例,您可以理解和实现Linux系统中的进程间通信机制,包括共享内存、消息队列和信号量。这些机制在实际开发中非常重要,能够提高系统的并发处理能力和数据通信效率。希望本文能为您的学习和开发提供实用的指导和帮助。
185 20
|
4月前
|
Linux
如何在 Linux 系统中查看进程占用的内存?
如何在 Linux 系统中查看进程占用的内存?
593 58
|
3月前
|
存储 监控 Linux
嵌入式Linux系统编程 — 5.3 times、clock函数获取进程时间
在嵌入式Linux系统编程中,`times`和 `clock`函数是获取进程时间的两个重要工具。`times`函数提供了更详细的进程和子进程时间信息,而 `clock`函数则提供了更简单的处理器时间获取方法。根据具体需求选择合适的函数,可以更有效地进行性能分析和资源管理。通过本文的介绍,希望能帮助您更好地理解和使用这两个函数,提高嵌入式系统编程的效率和效果。
138 13