Linux——进程的概念(万字总结)(4)

简介: Linux——进程的概念(万字总结)(4)

十一、地址空间的阐述

1.程序地址空间

对于下面的图大家一定不陌生,接下来通过以下的代码,来正确认识这张图

1ecd1b2606ed46e9956a89f231c9802c.png

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h> 
int g_unval;
int g_val = 100;
int main()
{                    
    int a = 10;                                        
    int b = 20;                        
    const char *s = "hello world";       
    printf("code addr:%p\n", main);       //代码区            
    printf("string rdonly addr:%p\n", s); //字符常量区
    printf("uninit addr:%p\n", &g_unval); //未初始化
    printf("init addr:%p\n", &g_val);     //已初始化
    char *heap = (char*)malloc(10);
    printf("heap addr:%p\n", heap);       //堆区
    printf("stack addr:%p\n", &s);        //栈区                         
    printf("stack addr:%p\n", &heap);
    printf("stack addr:%p\n", &a);
    printf("stack addr:%p\n", &b);
    return 0;                           
} 

1ecd1b2606ed46e9956a89f231c9802c.png

       通过运行后的结果可以看出,空间所谓的分步情况确实如此,但是接下来这段代码运行后的结果,会让让你很诧异。

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
int g_val = 100;
int main()
{
    if(fork() == 0){
        int ret = 5;
        while(ret){                                                                     
            printf("hello--- %d g_val = %d &g_val = %p\n", ret, g_val, &g_val);
            ret--;                         
            sleep(1);
            if(ret == 3){
                printf("################child更改数据###############\n");                              
                g_val = 200;
                printf("#############child更改数据完成##############\n");
            }   
        }                                          
    }                                  
    else{                  
        while(1){                                              
            printf("I am father:g_val = %d &g_val = %p\n", g_val, &g_val);                                                     
        }                                                              
    }                                                              
    return 0;                                               
}

1ecd1b2606ed46e9956a89f231c9802c.png

       通过上面的运行结果我们可以总结出:如果C/C++打印出来的地址是物理地址,那么上面的情况绝对不可能出现,所有这里的地址并不是物理地址,而是虚拟地址。

2.进程地址空间

之前说‘程序的地址空间’是不准确的,准确的应该说成进程虚拟地址空间 ,每个进程都会有自己的地址空间,认为自己独占物理内存。操作系统在描述进程地址空间时,是以结构体的形式描述的,在linux中这种结构体是 struct mm_struct 。它在内核中是一个数据结构类型,具体进程的地址空间变量。


       这些变量就是每个空间的起始位置与结束位置。如下图所示

1ecd1b2606ed46e9956a89f231c9802c.png

       进程地址空间就类似于一把尺子,每个空间都有对应的起始位置和结束位置。通过这个虚拟地址去间接访问内存;

为什么不能直接去访问物理内存?

    如果没有进程地址空间的加持,那么程序就会直接访问物理内存,没有区间可言,会存在恶意程序可以随意修改别的进程的内存数据,以达到破坏的目的。有些非恶意的,但是有bug的程序也可能不小心修改了其它程序的内存数据,就会导致其它程序的运行出现异常。这种情况对用户来说是无法容忍的,因为用户希望使用计算机的时候,其中一个任务失败了,至少不能影响其它的任务。

3.如何通过虚拟地址访问物理地址

  每个进程都是独立的虚拟地址空间,两个独立进程的相同地址互不干扰,但是在物理上对每个进程可能也就分了一部分空间给了某个进程。


       每个进程被创建时,其对应的进程控制块和进程虚拟地址空间也会随之被创建。而操作系统可以通过进程的控制块找到其进程地址空间,通过页表对将虚拟地址转换为物理地址,达到访问物理地址的目的。


       这种方式称之为映射,调度某个进程执行时,就要把它的地址空间映射到一个物理空间上。

1ecd1b2606ed46e9956a89f231c9802c.png

此时,我们来回答一下刚刚为什么g_val的值发生了变化,但是父进程与子进程的地址还是一样的。

1ecd1b2606ed46e9956a89f231c9802c.png

写时拷贝:就是等到修改数据时才真正分配内存空间,这是对程序性能的优化,可以延迟甚至是避免内存拷贝,当然目的就是避免不必要的内存拷贝

总结

     简而言之,首先,程序数据加载到内存后,由操作系统分配进程PCB(task_struct和mm_struct(进程虚拟地址空间))和页表。此时我们的进程就算是创建好了。


虚拟地址的设计有何好处:


       1.有了虚拟地址,每个进程都认为自己独占内存资源,这样对于操作系统来讲,也更加偏于管理进程。


       2.采用间接的地址访问方法访问物理内存。程序中访问的内存地址不再是实际的物理内存地址,而是一个虚拟地址,然后由操作系统将这个虚拟地址映射到适当的物理内存地址上。这样,只要操作系统处理好虚拟地址到物理内存地址的映射,就可以保证不同的程序最终访问的内存地址位于不同的区域,彼此没有重叠。


       3.如果没有进程地址空间的加持,那么程序就会直接访问物理内存,没有区间可言,会存在恶意程序可以随意修改别的进程的内存数据,以达到破坏的目的。反之有利于保护物理内存。



目录
相关文章
|
14天前
|
存储 Linux API
【Linux进程概念】—— 操作系统中的“生命体”,计算机里的“多线程”
在计算机系统的底层架构中,操作系统肩负着资源管理与任务调度的重任。当我们启动各类应用程序时,其背后复杂的运作机制便悄然展开。程序,作为静态的指令集合,如何在系统中实现动态执行?本文带你一探究竟!
【Linux进程概念】—— 操作系统中的“生命体”,计算机里的“多线程”
|
3月前
|
算法 Linux 调度
深入理解Linux操作系统的进程管理
本文旨在探讨Linux操作系统中的进程管理机制,包括进程的创建、执行、调度和终止等环节。通过对Linux内核中相关模块的分析,揭示其高效的进程管理策略,为开发者提供优化程序性能和资源利用率的参考。
132 1
|
26天前
|
存储 网络协议 Linux
【Linux】进程IO|系统调用|open|write|文件描述符fd|封装|理解一切皆文件
本文详细介绍了Linux中的进程IO与系统调用,包括 `open`、`write`、`read`和 `close`函数及其用法,解释了文件描述符(fd)的概念,并深入探讨了Linux中的“一切皆文件”思想。这种设计极大地简化了系统编程,使得处理不同类型的IO设备变得更加一致和简单。通过本文的学习,您应该能够更好地理解和应用Linux中的进程IO操作,提高系统编程的效率和能力。
75 34
|
9天前
|
Linux
Linux:守护进程(进程组、会话和守护进程)
守护进程在 Linux 系统中扮演着重要角色,通过后台执行关键任务和服务,确保系统的稳定运行。理解进程组和会话的概念,是正确创建和管理守护进程的基础。使用现代的 `systemd` 或传统的 `init.d` 方法,可以有效地管理守护进程,提升系统的可靠性和可维护性。希望本文能帮助读者深入理解并掌握 Linux 守护进程的相关知识。
27 7
|
8天前
|
Linux Shell
Linux 进程前台后台切换与作业控制
进程前台/后台切换及作业控制简介: 在 Shell 中,启动的程序默认为前台进程,会占用终端直到执行完毕。例如,执行 `./shella.sh` 时,终端会被占用。为避免不便,可将命令放到后台运行,如 `./shella.sh &`,此时终端命令行立即返回,可继续输入其他命令。 常用作业控制命令: - `fg %1`:将后台作业切换到前台。 - `Ctrl + Z`:暂停前台作业并放到后台。 - `bg %1`:让暂停的后台作业继续执行。 - `kill %1`:终止后台作业。 优先级调整:
30 5
|
8天前
|
Linux 应用服务中间件 nginx
Linux 进程管理基础
Linux 进程是操作系统中运行程序的实例,彼此隔离以确保安全性和稳定性。常用命令查看和管理进程:`ps` 显示当前终端会话相关进程;`ps aux` 和 `ps -ef` 显示所有进程信息;`ps -u username` 查看特定用户进程;`ps -e | grep &lt;进程名&gt;` 查找特定进程;`ps -p &lt;PID&gt;` 查看指定 PID 的进程详情。终止进程可用 `kill &lt;PID&gt;` 或 `pkill &lt;进程名&gt;`,强制终止加 `-9` 选项。
19 3
|
8天前
|
存储 算法 数据处理
进程基础:概念、状态与生命周期
进程是操作系统进行资源分配和调度的基本单位,由程序段、数据段和进程控制块(PCB)组成。线程是进程中更小的执行单元,能独立运行且共享进程资源,具有轻量级和并发性特点。进程状态包括就绪、运行和阻塞,其生命周期分为创建、就绪、运行、阻塞和终止阶段。
46 2
|
1月前
|
消息中间件 Linux C++
c++ linux通过实现独立进程之间的通信和传递字符串 demo
的进程间通信机制,适用于父子进程之间的数据传输。希望本文能帮助您更好地理解和应用Linux管道,提升开发效率。 在实际开发中,除了管道,还可以根据具体需求选择消息队列、共享内存、套接字等其他进程间通信方
66 16
|
2月前
|
消息中间件 Linux
Linux:进程间通信(共享内存详细讲解以及小项目使用和相关指令、消息队列、信号量)
通过上述讲解和代码示例,您可以理解和实现Linux系统中的进程间通信机制,包括共享内存、消息队列和信号量。这些机制在实际开发中非常重要,能够提高系统的并发处理能力和数据通信效率。希望本文能为您的学习和开发提供实用的指导和帮助。
178 20
|
4月前
|
Linux
如何在 Linux 系统中查看进程占用的内存?
如何在 Linux 系统中查看进程占用的内存?
569 58