29_mysql数据库优化之常见用法的性能对比(EXISTS、IN、SELECT、COUNT等)

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 每天进步亿点点
参考来源:

康师傅:https://www.bilibili.com/video/BV1iq4y1u7vj?p=149

爱编程的大李子:https://blog.csdn.net/LXYDSF/article/details/126606855

一、EXISTS 和 IN 的区分

不太理解哪种情况下应该使用 EXISTS,哪种情况应该用 IN。选择的标准是看能否使用表的索引吗?

索引是个前提,其实选择与否还是要看表的大小。你可以将选择的标准理解为 小表驱动大表。在这种方式下效率是最高的。

比如下面这样:

# 当 B 小于 A 时用 IN
SELECT * FROM A WHERE cc IN (SELECT cc FROM B)

# 当 A 小于 B 时,用 EXISTS。因为 EXISTS 的实现,相当于外表循环。
SELECT * FROM A WHERE EXISTS (SELECT cc FROM B WHERE B.cc = A.cc)

结论:哪个表小就用哪个表来驱动,A 表小就用 EXISTS ,B 表小就用 IN

二、COUNT(*) 与 COUNT(具体字段) 效率

在MySQL中统计数据表的行数,可以使用三种方式 SELECT COUNT(*)SELECT COUNT(1)SELECT COUNT(具体字段),使用这三者之间的查询效率是怎样的?

  • COUNT()COUNT(1) 都是对所有结果进行 COUNT,COUNT() 和 COUNT(1) 本质上并没有区别
  • 在 InnoDB 引擎中,如果采用 COUNT(具体字段) 来统计数据行数,要尽量采用二级索引。因为主键采用的索引是聚簇索引,聚簇索引包含的信息多,明显会大于二级索引。对于 COUNT(*)COUNT(1) 来说,它们不需要查找具体的行,只是统计行数,系统会自动采用占用空间更小的二级索引来进行统计

    如果有多个二级索引,会使用 keylen 小的二级索引进行扫描。当没有二级索引的时候,才会采用主键索引来进行统计。

三、SELECT *

在表查询中,建议明确字段,不要使用 * 作为查询的字段列表,推荐使用 SELECT <字段列表> 查询。原因:

  1. MySQL 在解析的过程中,会通过 查询数据字典 将 "*" 按序转换成所有列名,这会大大的耗费资源和时间。
  2. 无法使用 覆盖索引

四、LIMIT 1 对优化的影响

针对的是会扫描全表的SQL语句,如果你可以确定结果集只有一条,那么加上 LIMIT 1 的时候,当找到一条结果的时候就不会继续扫描了,这样会加快查询速度。

如果数据表已经对字段建立了唯一索引,那么可以通过索引进行查询,不会全表扫描的话,就 不需要加上 LIMIT 1 了。

五、多使用COMMIT

只要有可能,在程序中尽量多使用 COMMIT,这样程序的性能得到提高,需求也会因为 COMMIT 所释放的资源而减少。

COMMIT 所释放的资源:

  • 回滚段上用于恢复数据的信息
  • 被程序语句获得的锁
  • redo / undo log buffer 中的空间
  • 管理上述 3 种资源中的内部花费

六、普通索引 vs 唯一索引

查询过程

在查询过程中 普通索引 与 唯一索引 带来的性能差距比较小

更新过程:优先考虑普通索引

为了说明普通索引和唯一索引对更新语句性能的影响这个问题,介绍一下 change buffer

当需要更新一个数据页时,如果数据页在内存中就直接更新,而如果这个数据页还没有在内存中的话, 在不影响数据一致性的前提下,InooDB 会将这些更新操作缓存在 change buffer 中 ,这样就不需要从磁盘中读入这个数据页了。在下次查询需要访问这个数据页的时候,将数据页读入内存,然后执行 change buffer 中与这个页有关的操作。通过这种方式就能保证这个数据逻辑的正确性。

将 change buffer 中的操作应用到原数据页,得到最新结果的过程称为 merge。除了 访问这个数据页 会触发 merge 外,系统有 后台线程会定期 merge。在 数据库正常关闭(shutdown) 的过程中,也会执行 merge 操作。

如果能够将更新操作先记录在 change buffer, 减少读磁盘 ,语句的执行速度会得到明显的提升。而且, 数据读入内存是需要占用 buffer pool 的,所以这种方式还能够 避免占用内存 ,提高内存利用率。

那么,什么条件下可以使用 change buffer 呢?

对干唯一索引来说,所有的更新操作都要先判断这个操作是否违反唯一性约束。比如,要插入 (k, v) value (4, 400) 这个记录,就要先判断现在表中是否已经存在 k=4 的记录,而这必须要将数据页读入内存才能判断。如果都已经读入到内存了,那直接更新内存会更快,就没必要使用 change buffer 了。

因此,唯一索引的更新就不能使用 change buffer,实际上也只有普通索引可以使用

change buffer 用的是 buffer pool 里的内存,因此不能无限增大。change buffer 的大小,可以通过参数 innodb_change_buffer_max_size 来动态设置。这个参数设置为 50 的时候,表示 changebuffer 的大小最多只能占用 buffer pool 的 50% 。

如果要在这张表中插入一个新记录 (4,400) 的话,InnoDB的处理流程是怎样的?

第一种情况是,这个记录要更新的目标页在内存中。这时:

  • 对干唯一索引来说,找到 3 和 5 之间的位置,判断为没有冲突,插入这个值,语句执行结束
  • 对于普通索引来说,找到 3 和 5 之间的位置,插入这个值,语句执行结束。

这样看来,普通索引和唯一索引对更新语句性能影响的差别,只是一个判断,只会耗费微小的CPU时间。

第二种情况是,这个记录要更新的目标页不在内存中。这时:

  • 对于唯一索引来说,需要将数据页读入内存,判断到没有冲突,插入这个值,语句执行结束;
  • 对于普通索引来说,则是将更新记录在 change buffer,语句执行就结束了。

将数据从磁盘读入内存涉及随机 I/O 的访问,是数据库里面成本最高的操作之一。change buffer 因为减少了随机磁盘访问,所以对更新性能的提升是会很明显的。

案例:
某个业务的库内存命中率突然从 99% 降低到了 75%,整个系统处于阻塞状态,更新语句全部堵住。而探究其原因后,发现这个业务有大量插入数据的操作,而他在前一天把其中的某个普通索引改成了唯一索引。

change buffer的使用场景

change buffer 只限于用在普通索引的场景下,而不适用于唯一索引。那么,现在有一个问题就是:普通索引的所有场景,使用 change buffer 都可以起到加速作用吗?

因为 merge 的时候是真正进行数据更新的时刻,而 change buffer 的主要目的就是将记录的变更动作缓存下来,所以在一个数据页做 merge 之前,change buffer 记录的变更越多(也就是这个页面上要更新的次数越多),收益就越大

因此,对于写多读少的业务来说,页面在写完以后马上被访问到的概率比较小,此时 change buffer 的使用效果最好。这种业务模型常见的就是账单类、日志类的系统。

反过来,假设一个业务的更新模式是写入之后马上会做查询,那么即使满足了条件,将更新先记录在 change buffer,之后由干马上要访问这个数据页,会立即触发 merge 过程,这样随机访问 I/O 的次数不会减少,反而增加了 change buffer 的维护代价。所以,对于这种业务模式来说,change buffer 反而起到了副作用。

  1. 普通索引和唯一索引应该怎么选择?其实,这两类索引在查询能力上是没差别的,主要考虑的是对 更新性能 的影响。所以,建议你 尽量选择普通索引
  2. 在实际使用中会发现, 普通索引change buffer 的配合使用,对于 数据量大 的表的更新优化还是很明显的。
  3. 如果所有的更新后面,都马上 伴随着对这个记录的查询,那么你应该关闭 change buffer 。而在其他情况下,change buffer 都能提升更新性能。
  4. 由于唯一索引用不上 change buffer 的优化机制,因此如果 业务可以接受 ,从性能角度出发建议优先考虑非唯一索引。但是如果"业务可能无法确保"的情况下,怎么处理呢?

    • 首先, 业务正确性优先 。我们的前提是“业务代码已经保证不会写入重复数据”的情况下,讨论性能问题。如果业务不能保证,或者业务就是要求数据库来做约束,那么没得选,必须创建唯一索引。 这种情况下,本节的意义在于,如果碰上了大量插入数据慢、内存命中率低的时候,给你多提供一个排查思路。
    • 然后,在一些“归档库”的场景,你是可以考虑使用唯一索引的。比如,线上数据只需要保留半年, 然后历史数据保存在归档库。这时候,归档数据已经是确保没有唯一键冲突了。要提高归档效率, 可以考虑把表里面的唯一索引改成普通索引。
相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
3天前
|
缓存 算法 关系型数据库
MySQL底层概述—8.JOIN排序索引优化
本文主要介绍了MySQL中几种关键的优化技术和概念,包括Join算法原理、IN和EXISTS函数的使用场景、索引排序与额外排序(Using filesort)的区别及优化方法、以及单表和多表查询的索引优化策略。
MySQL底层概述—8.JOIN排序索引优化
|
4天前
|
SQL 关系型数据库 MySQL
MySQL底层概述—7.优化原则及慢查询
本文主要介绍了:Explain概述、Explain详解、索引优化数据准备、索引优化原则详解、慢查询设置与测试、慢查询SQL优化思路
MySQL底层概述—7.优化原则及慢查询
|
5天前
|
存储 缓存 关系型数据库
MySQL底层概述—5.InnoDB参数优化
本文介绍了MySQL数据库中与内存、日志和IO线程相关的参数优化,旨在提升数据库性能。主要内容包括: 1. 内存相关参数优化:缓冲池内存大小配置、配置多个Buffer Pool实例、Chunk大小配置、InnoDB缓存性能评估、Page管理相关参数、Change Buffer相关参数优化。 2. 日志相关参数优化:日志缓冲区配置、日志文件参数优化。 3. IO线程相关参数优化: 查询缓存参数、脏页刷盘参数、LRU链表参数、脏页刷盘相关参数。
MySQL底层概述—5.InnoDB参数优化
|
7天前
|
关系型数据库 MySQL 数据库
从MySQL优化到脑力健康:技术人与效率的双重提升
聊到效率这个事,大家应该都挺有感触的吧。 不管是技术优化还是个人状态调整,怎么能更快、更省力地完成事情,都是我们每天要琢磨的事。
56 23
|
6天前
|
SQL 关系型数据库 MySQL
MySQL原理简介—11.优化案例介绍
本文介绍了四个SQL性能优化案例,涵盖不同场景下的问题分析与解决方案: 1. 禁止或改写SQL避免自动半连接优化。 2. 指定索引避免按聚簇索引全表扫描大表。 3. 按聚簇索引扫描小表减少回表次数。 4. 避免产生长事务长时间执行。
|
24天前
|
关系型数据库 MySQL 数据库连接
数据库连接工具连接mysql提示:“Host ‘172.23.0.1‘ is not allowed to connect to this MySQL server“
docker-compose部署mysql8服务后,连接时提示不允许连接问题解决
|
10天前
|
关系型数据库 MySQL 数据库
Docker Compose V2 安装常用数据库MySQL+Mongo
以上内容涵盖了使用 Docker Compose 安装和管理 MySQL 和 MongoDB 的详细步骤,希望对您有所帮助。
82 42
|
1天前
|
关系型数据库 MySQL 网络安全
如何排查和解决PHP连接数据库MYSQL失败写锁的问题
通过本文的介绍,您可以系统地了解如何排查和解决PHP连接MySQL数据库失败及写锁问题。通过检查配置、确保服务启动、调整防火墙设置和用户权限,以及识别和解决长时间运行的事务和死锁问题,可以有效地保障应用的稳定运行。
40 25
|
28天前
|
缓存 关系型数据库 MySQL
【深入了解MySQL】优化查询性能与数据库设计的深度总结
本文详细介绍了MySQL查询优化和数据库设计技巧,涵盖基础优化、高级技巧及性能监控。
229 0
|
2月前
|
存储 Oracle 关系型数据库
数据库传奇:MySQL创世之父的两千金My、Maria
《数据库传奇:MySQL创世之父的两千金My、Maria》介绍了MySQL的发展历程及其分支MariaDB。MySQL由Michael Widenius等人于1994年创建,现归Oracle所有,广泛应用于阿里巴巴、腾讯等企业。2009年,Widenius因担心Oracle收购影响MySQL的开源性,创建了MariaDB,提供额外功能和改进。维基百科、Google等已逐步替换为MariaDB,以确保更好的性能和社区支持。掌握MariaDB作为备用方案,对未来发展至关重要。
73 3

热门文章

最新文章