线性规划求解第一的MindOpt如何使用Python语言的API建模及优化

简介: MindOpt是一款高效的优化算法软件包,求解算法实现了线性规划(LP)、混合整数线性规划(MILP)、二次规划(QP),可以支持命令行、c、c++、java和python调用。接下来我们将发布一系列文章,讲述各个语言如何使用 MindOpt 来求解数学规划问题

本篇文章是系列文章的开篇,下文会分享小编个人线性规划的定义,然后举个一例题,最后将讲述使用 MindOpt Python 语言的 API 来建模以及求解 线性规划问题示例 中的问题以及求解的结果


MindOpt Python、C、C++语言求解LP、MILP、QP问题系列


安装MindOpt

用户可以点这里下载安装MindOpt优化求解器,免费的。找不到安装步骤点这里

(官网https://opt.aliyun.com有更多信息等着您哟!)


线性规划

我们先介绍一下线性规划我个人认为是在线性的目标和约束中,找出一个最优解(如最大利润或最低成本)。线性规划可以广泛的应用在我们的生活中,解决资源利用、人力调配、生产安排等问题。


入门案例

一位员工每天要负责处理a任务(生成零部件) 和b任务(组装产品)。其参与a任务的报酬为100元/小时,b任务的报酬为150元/小时。工厂要求该员工每天在每个任务上花费至少 3 个小时。已知该员工每天工作8小时(因此在 6 小时之外,可以自行决定 2 小时如何工作),那么他该如何在两项任务上分配时间以得到尽可能多的报酬?


  • 以上问题可以被称为任务分配问题,也可以被视为一个简单的排产排程问题,由于该员工要决策时间分配,我们引入决策变量 Xa和 Xb用于表示该工人投入在任务和任务中的时长。由问题描述可知,这些变量需要满足Xa+Xb=8 和 Xa>=3,Xb>=3。
  • 此外,该工人的目标是获得尽可能多的报酬。在定义如上三要素后,我们可以建立如下的数学规划问题
  • 决策变量: Xa,Xb
  • 目标函数: maxmize 100Xa + 150Xb
  •     约束:  s.t.  Xa + Xb = 8
  •                      Xa>=3 , Xb>=3
  • 这个列题最后求出的最优解是每天参与a任务三小时、b任务5小时。

image.png


在上文的例子,是一个简单的线性规划问题,只有两个决策变量,而线性规划问题示例中的问题涉及到四个决策变量,人工去求最优解呢,需要先把线性规划问题转换为标准形式,然后制表、入基、出基、换基,最后迭代得出最优解,过程比较复杂。


那么我们可以使用商用求解器 MindOpt ,让计算机来帮助我们求解。


线性规划问题可以用以下数学公式来描述:

image.png

公式参考自:https://solver.damo.alibaba.com/doc/html/model/lp/linear%20problem.html


进阶算例-实际例子算

要找到一个和线性规划问题示例中的问题相匹配的文字列题比较困难,所以我们在这里做一个假设,把它当成是一个人力调配的问题,求解的是一个目标函数的最小值,也就是花费最低成本去解决问题


线性规划问题示例:

image.png


Python+MindOpt代码实现

 # 引入python包
from mindoptpy import *

if __name__ == "__main__":

    MDO_INFINITY = MdoModel.get_infinity()

    # Step 1.创建模型并更改参数。
    
    model = MdoModel()


    try:

        # Step 2. 输入模型。

        #  改为最小化问题。
        #  通过 mindoptpy.MdoModel.set_int_attr() 将目标函数设置为 最小化 

        model.set_int_attr(MDO_INT_ATTR.MIN_SENSE, 1)

        #  添加变量。
        #  通过mindoptpy.MdoModel.add_var() 来添加四个优化变量,
        #  定义其下界、上界、名称和类型。

        x = []

        x.append(model.add_var(0.0,         10.0, 1.0, None, "x0", False))

        x.append(model.add_var(0.0, MDO_INFINITY, 1.0, None, "x1", False))

        x.append(model.add_var(0.0, MDO_INFINITY, 1.0, None, "x2", False))

        x.append(model.add_var(0.0, MDO_INFINITY, 1.0, None, "x3", False))

        #  添加约束。

        #  注意这里的非零元素是按行顺序输入的。

        model.add_cons(1.0, MDO_INFINITY, 1.0 * x[0] + 1.0 * x[1] + 2.0 * x[2] + 3.0 * x[3], "c0")

        model.add_cons(1.0,          1.0, 1.0 * x[0]              - 1.0 * x[2] + 6.0 * x[3], "c1")

        
        # Step 3. 解决问题并填充结果。
        # 调用 mindoptpy.MdoModel.solve_prob() 求解优化问题,
        # 并用 mindoptpy.MdoModel.display_results() 来查看优化结果

        model.solve_prob()
        model.display_results()

        # 调用 mindoptpy.MdoModel.get_status() 来检查求解器的优化状态,
        # 并通过 mindoptpy.MdoModel.get_real_attr() 和 
        # mindoptpy.MdoVar.get_real_attr() 来获取目标值和最优解。
        status_code, status_msg = model.get_status()
        if status_msg == "OPTIMAL":
            print("Optimizer terminated with an OPTIMAL status (code {0}).".format(status_code))
            print("Primal objective : {0}".format(round(model.get_real_attr(MDO_REAL_ATTR.PRIMAL_OBJ_VAL), 2)))
            for curr_x in x:
                print(" - x[{0}]          : {1}".format(curr_x.get_index(), round(curr_x.get_real_attr(MDO_REAL_ATTR.PRIMAL_SOLN), 2)))
        else:
            print("Optimizer terminated with a(n) {0} status (code {1}).".format(status_msg, status_code))

        # 如果求解异常,在这里将会看见它的状态码和错误原因
    except MdoError as e:
        print("Received Mindopt exception.")
        print(" - Code          : {}".format(e.code))
        print(" - Reason        : {}".format(e.message))
    except Exception as e:
        print("Received exception.")
        print(" - Reason        : {}".format(e))
    finally:

        # Step 4. 释放模型。
        # 调用 mindoptpy.MdoModel.free_mdl() 来释放内存
        # (多次运行部分脚本的时候有些变量已经被用,所以调用这个api进行清除)

        model.free_mdl()
MindOpt求解的结果
# 模型摘要
Model summary.
 - Num. variables     : 4
 - Num. constraints   : 2
 - Num. nonzeros      : 7
 - Bound range        : [1.0e+00,1.0e+01] #限制范围
 - Objective range    : [1.0e+00,1.0e+00] #目标范围
 - Matrix range       : [1.0e+00,6.0e+00] #矩阵范围

Presolver started.
Presolver terminated. Time : 0.001s

Simplex method started.

    Iteration       Objective       Dual Inf.     Primal Inf.     Time
            0     0.00000e+00      0.0000e+00      1.0000e+00     0.00s    
            2     4.00000e-01      0.0000e+00      0.0000e+00     0.01s    
Postsolver started.
Simplex method terminated. Time : 0.004s

# 决策变量的最佳取值
Optimizer terminated with an OPTIMAL status (code 1).
Primal objective : 0.4
 - x[0]          : 0.0
 - x[1]          : 0.0
 - x[2]          : 0.2
 - x[3]          : 0.2

# 展示了使用的单纯形法,优化器的状态,优化使用的时间
Optimizer summary.
 - Optimizer used     : Simplex method
 - Optimizer status   : OPTIMAL
 - Total time         : 0.005s

# 目标函数的实现
Solution summary.       Primal solution
 - Objective          : 4.0000000000e-01

联系我们

钉钉:damodi

邮箱地址:solver.damo@list.alibaba-inc.com


相关文章
|
2月前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品加工优化的深度学习模型
使用Python实现智能食品加工优化的深度学习模型
187 59
|
3月前
|
Web App开发 前端开发 JavaScript
探索Python科学计算的边界:利用Selenium进行Web应用性能测试与优化
【10月更文挑战第6天】随着互联网技术的发展,Web应用程序已经成为人们日常生活和工作中不可或缺的一部分。这些应用不仅需要提供丰富的功能,还必须具备良好的性能表现以保证用户体验。性能测试是确保Web应用能够快速响应用户请求并处理大量并发访问的关键步骤之一。本文将探讨如何使用Python结合Selenium来进行Web应用的性能测试,并通过实际代码示例展示如何识别瓶颈及优化应用。
161 5
|
20天前
|
数据采集 JSON API
如何利用Python爬虫淘宝商品详情高级版(item_get_pro)API接口及返回值解析说明
本文介绍了如何利用Python爬虫技术调用淘宝商品详情高级版API接口(item_get_pro),获取商品的详细信息,包括标题、价格、销量等。文章涵盖了环境准备、API权限申请、请求构建和返回值解析等内容,强调了数据获取的合规性和安全性。
|
25天前
|
数据可视化 算法 数据挖掘
Python量化投资实践:基于蒙特卡洛模拟的投资组合风险建模与分析
蒙特卡洛模拟是一种利用重复随机抽样解决确定性问题的计算方法,广泛应用于金融领域的不确定性建模和风险评估。本文介绍如何使用Python和EODHD API获取历史交易数据,通过模拟生成未来价格路径,分析投资风险与收益,包括VaR和CVaR计算,以辅助投资者制定合理决策。
69 15
|
2月前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
1月前
|
缓存 大数据 C语言
python优化
python优化
41 5
|
2月前
|
机器学习/深度学习 数据采集 运维
使用 Python 实现深度学习模型:智能食品生产线优化
使用 Python 实现深度学习模型:智能食品生产线优化
67 13
|
2月前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
74 8
|
2月前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品供应链优化的深度学习模型
使用Python实现智能食品供应链优化的深度学习模型
54 8
|
2月前
|
机器学习/深度学习 算法 数据可视化
使用Python实现深度学习模型:智能食品配送优化
使用Python实现深度学习模型:智能食品配送优化
85 2