Linux进程地址空间

简介: Linux进程地址空间

⚽一、进程地址空间区域划分


1669273546000.jpg

👓Ⅰ区域划分


本次博客我们以32位操作系统来作为范本说明,64位与之类似。我们知道地址空间描述的基本空间大小是以字节为单位,在32位操作系统下,我们有2^32个字节, 也就是4GB的空间范围(理想状态,实际用户用不了4GB).而32位下有2^32个地址,每个地址标识一个字节大小,这样我们4GB的空间每个位置都可以表示出来。


那么我们是怎么把4GB的空间进行区域划分来供使用呢?要知道地址空间有栈区、堆区、代码段,静态区等。操作系统是怎么划分各个区的空间呢?


其实这里所谓的区域划分很简单,就是每个区域设定一个start,一个end,这之间就是允许它使用的区域。


1669273559194.jpg


它类似于我们学生时代喜欢在课桌上划分三八线,就是非常简单的区域划分。


👓Ⅱ虚拟地址和物理地址


区域划分非常简单,然后这里有个问题,它划分的进程地址空间是虚拟地址还是物理地址呢?物理地址就是实实在在在内存上的地址,一个萝卜一个坑。


我们可以用一段代码来判断。


1669273571473.jpg


我们在这段代码里看到,父子进程里global_val有相同的地址,但是它们指向的值并不相同,所以它不是在内存上的物理地址,而应该是虚拟地址。


1669273581146.jpg


所以说到这里,我们讲了区域划分以及进程地址空间的地址是虚拟地址。这里需要注意:


🖊除了栈区和堆区,其他区域的大小是确定的,栈区和堆区的区域划分是不确定的,会不断调整,比如我们压栈,或者动态开辟内存导致堆生长都会导致栈区和堆区结束地址的改变。


🖊比如我们malloc或者new空间,堆区向上生长,扩大堆区,当我们free或delete空间,堆区释放,缩小堆区。比如我们递归压栈,栈区向下生长,栈区扩大,当函数调用完毕,栈区缩小。


⚽二、页表和映射


我们知道进程地址空间是虚拟地址并不是真正的内存上的物理地址,我们写代码必须要加载到内存上才能调用或者写入磁盘,那么我们怎么把虚拟地址和物理地址联系起来呢?这里就要说到操作系统的页表。所谓的页表,它的本质非常复杂,博主不过多介绍它,我们只介绍它对于虚拟地址和物理地址建立联系起到什么作用。


1669273592610.jpg


当然,真正的页表远比我画的图要复杂,页表是的本质是哈希表。它的左列为虚拟地址,要写的,右列为物理地址,每个虚拟地址都对应于一个物理地址。这就是映射,但是它并不是一一映射的关系,后面我们举例来说明映射是多个虚拟地址可能对应一个物理地址。


1669273601544.jpg


我们介绍过页表之后,就可以完整来看一下我们写代码的存储程序。比如我们在程序里写入char c=100;&c就是它的地址,我们假设0x1234 5678.这是它在进程地址空间上的虚拟地址,然后我们通过页表,对应的在内存上给它开辟一块空间,有个物理地址0x1111 2222,这时进行写入到内存,这样它就有了物理地址,写入了内存。如果我们想写入磁盘,也是通过页表,一般内存操作系统和外设(比如磁盘)IO(读取和写入)的时候基本单位一般4KB,而页表的大小一般也是4KB。


⚽三、借由父子进程再来理解虚拟地址和物理地址


之前我们的代码,出现了相同虚拟地址指向不同的内容的情况,我们在了解学习虚拟地址和物理地址,页表之后,可以解释为什么会出现这样的情况。


1669279850984.jpg


博主先把父子进程的进程地址画出来方便分析。


1669279865022.jpg


我们知道父进程fork创建的子进程,所谓的创建就是把父进程的PCB拷贝给子进程,把父进程的虚拟地址空间也拷贝给子进程,所以会出现虚拟地址相同。刚开始的时候,父子进程中变量global_val的虚拟地址是相同的,通过指向的物理地址也是相同的,所以会出现相同的88,而在5s之后子进程尝试写入100时,发生了变化。


此时因为子进程把父子进程共享的数据global_val进行了修改,因为进程具有独立性,一个进程对共享的数据做修改,如果影响了其他进程,就不能称之为独立性。所以父子进程任何一方尝试对共享数据进行修改,操作系统会在物理内存重新开辟一块物理空间,修改映射关系,不再指向之前的物理内存,这里就出现了我们说的相同的虚拟地址指向不同的物理地址的映射关系指向新的物理内存并将88修改为100.


1669279876050.jpg


操作系统将这种行为称为写时拷贝:


任何一方尝试写入,os操作系统先进行数据拷贝,更改页表映射,然后再让进程进行修改。


🎈进程地址空间的意义


可能有的老铁有疑惑,地址空间存在的意义是什么呢?我们直接将程序写入内存物理地址不就行了?


🖊我们要想到如果让进程直接访问物理内存,万一进程越界非法操作呢?可能使内存崩溃,非常危险。当然虚拟地址也有可能越界,不过要安全很多,这里页表也会进行保护,截止非法访问。


🖊而且我们如果直接访问物理内存,空指针、内存泄漏等行为可能直接把系统搞坏,而虚拟地址保护了我们的物理内存。


🖊地址空间的存在,可以更方便的进行进程和进程的数据代码的解耦,保证了进程独立性这样的特征。


⚽四、磁盘中的可执行程序


1669279885873.jpg

磁盘中的可执行程序在磁盘上是否有地址呢?是有的,因为在预处理时我们就知道在没有被加载到内存的时候,在汇编时就已经有了地址,汇编代码是有地址的。这里在磁盘内我们称为逻辑地址。所以可执行程序内部还是以进程地址空间那一套虚拟地址进行编译的。


1669279895217.jpg

其实可执行程序内部始终保持虚拟地址是一件非常有意义的一件事情,当它从磁盘读取到物理内存中时,它同时具备两套地址,一套地址标识物理内存中代码和数据的地址,也就是在物理内存按照内存的编址方式再给一套地址。还有一套是程序内部互相跳转的虚拟地址。然后我们通过页表进行映射时没必要再编址虚拟地址,能直接调用使用。

1669279905045.jpg

🏆cpu读取


我们的cpu在读取时,它获取到的是物理地址还是虚拟地址呢?cpu读取的天然是虚拟地址,虽然当cpu从进程中读取到虚拟地址,通过页表映射得到物理地址,但是物理地址main函数内部还是虚拟地址,所以cpu读取的就是虚拟地址!!


🏆逻辑地址


磁盘内部是按照虚拟地址编址的,官方来说是逻辑地址。逻辑地址在磁盘内部有两套实现方案。


一种就是按照32位进程地址空间一样编址的。还有一种方式就是给每个区,比如代码区、数据区、在这个区内部第一个位置就是0,然后相对于这个区内部第一个位置有个偏移量。然后读取到内存时还要进行修改,起始位置加上偏移量。不过这种方式比较繁琐,是比较老版本的实现方式。


所以这里让进程以统一的视角来看待进程对应的代码和数据等各个区域,方便使用编译器也以统一视角来进行编译代码。


⚽五、再次理解父子进程


我们这里主要来说一下fork这个函数在内核空间是怎么在操作的。


1669279914541.jpg


为什么return会有两个返回值呢?当fork函数创建子进程,将子进程内部也拷贝一份和父进程完全相同的内容之后,它里面也会执行fork函数,然后父子进程的fork都会有return返回。而返回的本质就是写入,所以会有写时拷贝,父子进程fork返回值指向不同的物理空间。


那么不知道有没有老铁有和博主一样的疑惑呢?那就是子进程里面的fork函数不会再执行fork函数创建一个子进程导致无限递归创建子进程吗?fork函数不会,他会子进程同步到父进程执行到的那一步,不会再创建,这里其实有一个函数vfork,它会子进程再重新执行一次,不和父进程同步,那么就会出现无限递归创建导致操作系统挂掉!!

相关文章
|
5月前
|
并行计算 Linux
Linux内核中的线程和进程实现详解
了解进程和线程如何工作,可以帮助我们更好地编写程序,充分利用多核CPU,实现并行计算,提高系统的响应速度和计算效能。记住,适当平衡进程和线程的使用,既要拥有独立空间的'兄弟',也需要在'家庭'中分享和并行的成员。对于这个世界,现在,你应该有一个全新的认识。
236 67
|
4月前
|
Web App开发 Linux 程序员
获取和理解Linux进程以及其PID的基础知识。
总的来说,理解Linux进程及其PID需要我们明白,进程就如同汽车,负责执行任务,而PID则是独特的车牌号,为我们提供了管理的便利。知道这个,我们就可以更好地理解和操作Linux系统,甚至通过对进程的有效管理,让系统运行得更加顺畅。
115 16
|
4月前
|
Unix Linux
对于Linux的进程概念以及进程状态的理解和解析
现在,我们已经了解了Linux进程的基础知识和进程状态的理解了。这就像我们理解了城市中行人的行走和行为模式!希望这个形象的例子能帮助我们更好地理解这个重要的概念,并在实际应用中发挥作用。
93 20
|
3月前
|
监控 Shell Linux
Linux进程控制(详细讲解)
进程等待是系统通过调用特定的接口(如waitwaitpid)来实现的。来进行对子进程状态检测与回收的功能。
74 0
|
3月前
|
存储 负载均衡 算法
Linux2.6内核进程调度队列
本篇文章是Linux进程系列中的最后一篇文章,本来是想放在上一篇文章的结尾的,但是想了想还是单独写一篇文章吧,虽然说这部分内容是比较难的,所有一般来说是简单的提及带过的,但是为了让大家对进程有更深的理解与认识,还是看了一些别人的文章,然后学习了学习,然后对此做了总结,尽可能详细的介绍明白。最后推荐一篇文章Linux的进程优先级 NI 和 PR - 简书。
102 0
|
3月前
|
存储 Linux Shell
Linux进程概念-详细版(二)
在Linux进程概念-详细版(一)中我们解释了什么是进程,以及进程的各种状态,已经对进程有了一定的认识,那么这篇文章将会继续补全上篇文章剩余没有说到的,进程优先级,环境变量,程序地址空间,进程地址空间,以及调度队列。
65 0
|
3月前
|
Linux 调度 C语言
Linux进程概念-详细版(一)
子进程与父进程代码共享,其子进程直接用父进程的代码,其自己本身无代码,所以子进程无法改动代码,平时所说的修改是修改的数据。为什么要创建子进程:为了让其父子进程执行不同的代码块。子进程的数据相对于父进程是会进行写时拷贝(COW)。
67 0
|
5月前
|
JavaScript Linux Python
在Linux服务器中遇到的立即重启后的绑定错误:地址已被使用问题解决
总的来说,解决"地址已被使用"的问题需要理解Linux的网络资源管理机制,选择合适的套接字选项,以及合适的时间点进行服务重启。以上就是对“立即重启后的绑定错误:地址已被使用问题”的全面解答。希望可以帮你解决问题。
302 20
|
6月前
|
存储 Linux 调度
【Linux】进程概念和进程状态
本文详细介绍了Linux系统中进程的核心概念与管理机制。从进程的定义出发,阐述了其作为操作系统资源管理的基本单位的重要性,并深入解析了task_struct结构体的内容及其在进程管理中的作用。同时,文章讲解了进程的基本操作(如获取PID、查看进程信息等)、父进程与子进程的关系(重点分析fork函数)、以及进程的三种主要状态(运行、阻塞、挂起)。此外,还探讨了Linux特有的进程状态表示和孤儿进程的处理方式。通过学习这些内容,读者可以更好地理解Linux进程的运行原理并优化系统性能。
217 4
|
6月前
|
Linux Shell
Linux 进程前台后台切换与作业控制
进程前台/后台切换及作业控制简介: 在 Shell 中,启动的程序默认为前台进程,会占用终端直到执行完毕。例如,执行 `./shella.sh` 时,终端会被占用。为避免不便,可将命令放到后台运行,如 `./shella.sh &`,此时终端命令行立即返回,可继续输入其他命令。 常用作业控制命令: - `fg %1`:将后台作业切换到前台。 - `Ctrl + Z`:暂停前台作业并放到后台。 - `bg %1`:让暂停的后台作业继续执行。 - `kill %1`:终止后台作业。 优先级调整:
318 5