代码案例详解!如何让机器学习模型自解释!⛵

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 本文讲解一种比较全能的『机器学习模型可解释性』方法——SHAP。通过调用Python的SHAP工具库,对机器学习模型做可解释性分析,判断不同特征对于当前模型的重要程度。
d26ef9e3836dad9ecc43e05c49f713ce.png
💡 作者: 韩信子@ ShowMeAI
📘 机器学习实战系列https://www.showmeai.tech/tutorials/41
📘 本文地址https://www.showmeai.tech/article-detail/337
📢 声明:版权所有,转载请联系平台与作者并注明出处
📢 收藏 ShowMeAI查看更多精彩内容
167ca463193b3da47a89ddec74ac4ad4.png

近年来,可解释的人工智能(XAI)和可解释的机器学习引起了越来越多的关注,因为直接把模型当做黑箱使用信任度和可控度都会受影响。有一些领域,模型的可解释性更加重要,例如在医疗领域,患者会质疑为什么模型诊断出他们患有某种疾病。

在本篇内容中, ShowMeAI 将给大家讲解一个流行的模型解释方法 SHAP(SHapley Additive exPlanations),并基于实际案例讲解如何基于工具库对模型做解释。

876c5df29bbdd943f8696719d48bf536.png

💡 模型可解释方法的划分

我们对各类模型可解释方法进行划分,有以下一些划分维度:

  • 模型无关和模型特定:一些方法可用于各种模型,而另一些方法是为解释特定模型而创建的。
  • 全局和局部解释:本地意味着进行分析以了解如何做出特定预测。 另一方面,全局解释研究了影响所有预测的因素。
  • 基于模型和事后归因:基于模型的模型是我们可以直接理解的模型,例如线性回归模型。 另一类是事后解释模型的归因方法,大多数方法都属于这一类。

💡 SHAP 原理

📘SHAP 全称是 SHapley Additive exPlanation,是比较全能的模型可解释性的方法,既可作用于全局解释,也可以局部解释,即单个样本来看,模型给出的预测值和某些特征可能的关系,可以用SHAP来解释。

6301d1e6b5140def5a9b92f72bcd6799.png

SHAP 属于模型事后解释的方法,核心思想是计算特征对模型输出的边际贡献,再从全局和局部两个层面对『黑盒模型』进行解释。SHAP 构建一个加性的解释模型,所有的特征都视为『贡献者』。

对于每个预测样本,模型都产生一个预测值,SHAP value 就是该样本中每个特征所分配到的数值。

4c9f8964e70f99fa58991bd44554bc4e.png

基本思想:计算一个特征加入到模型时的边际贡献,然后考虑到该特征在所有的特征序列的情况下不同的边际贡献,取均值,即某该特征的 SHAP baseline value。

💡 案例实战讲解

我们来拿一个场景案例讲解一下SHAP如何进行模型可解释分析,用到的数据是人口普查数据,我们会调用 Python 的工具库库 SHAP 直接分析模型。

💦 数据说明

ShowMeAI在本例中使用到的是 🏆美国人口普查收入数据集,任务是根据人口基本信息预测其年收入是否可能超过 50,000 美元,是一个二分类问题。

16a2f3f34b9dae14dc11035b5a7ca08a.png

数据集可以在以下地址下载: 📘 https://archive.ics.uci.edu/ml/datasets/Adult 📘

数据从美国1994年人口普查数据库抽取而来,可以用来预测居民收入是否超过50K/year。

  • 该数据集类变量为年收入是否超过50k,属性变量包含年龄、工种、学历、职业、人种等重要信息,值得一提的是,14个属性变量中有7个类别型变量。
  • 数据集各属性是:其中序号0~13是属性,14是类别。
字段序号 字段名 含义 类型
0 age 年龄 Double
1 workclass 工作类型* string
2 fnlwgt 序号 string
3 education 教育程度* string
4 education_num 受教育时间 double
5 maritial_status 婚姻状况* string
6 occupation 职业* string
7 relationship 关系* string
8 race 种族* string
9 sex 性别* string
10 capital_gain 资本收益 string
11 capital_loss 资本损失 string
12 hours_per_week 每周工作小时数 double
13 native_country 原籍* string
14(label) income 收入标签 string
f0306dabb8d65c2c68286eb403b0984a.png

💦 SHAP计算 & 模型解释

from sklearn.model_selection import train_test_split
import lightgbm as lgb
import shap

shap.initjs()
X,y = shap.datasets.adult()
X_display,y_display = shap.datasets.adult(display=True)# create a train/test split

# 训练集与测试集切分及处理
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=7)
d_train = lgb.Dataset(X_train, label=y_train)
d_test = lgb.Dataset(X_test, label=y_test)# create a simple model

# 模型参数
params = {
    "max_bin": 512,
    "learning_rate": 0.05,
    "boosting_type": "gbdt",
    "objective": "binary",
    "metric": "binary_logloss",
    "num_leaves": 10,
    "verbose": -1,
    "min_data": 100,
    "boost_from_average": True
}

# 模型训练
model = lgb.train(params, d_train, 10000, valid_sets=[d_test], early_stopping_rounds=50, verbose_eval=1000)# explain the model

# 模型解释
explainer = shap.TreeExplainer(model)
shap_values = explainer.shap_values(X)# visualize the impact of each features
shap.summary_plot(shap_values, X)
762d8bc6163332f8265b88d2ec5a731e.png
355ff908329422f0c7e2597d30bf96c0.png

上图中的SHAP结果值,告诉我们不同的特征维度(输入)对于当前模型的重要程度,包括总体的重要程度,以及对每个类别的判定的影响程度。

参考资料

推荐阅读

e9190f41b8de4af38c8a1a0c96f0513b~tplv-k3u1fbpfcp-zoom-1.image

目录
相关文章
|
2月前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
【10月更文挑战第6天】如何使用机器学习模型来自动化评估数据质量?
|
10天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的线性回归模型
本文深入探讨了机器学习中广泛使用的线性回归模型,从其基本概念和数学原理出发,逐步引导读者理解模型的构建、训练及评估过程。通过实例分析与代码演示,本文旨在为初学者提供一个清晰的学习路径,帮助他们在实践中更好地应用线性回归模型解决实际问题。
|
19天前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?
|
16天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
51 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
18天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
39 2
|
20天前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
46 1
|
21天前
|
机器学习/深度学习 数据采集 人工智能
揭秘AI:机器学习的魔法与代码
【10月更文挑战第33天】本文将带你走进AI的世界,了解机器学习的原理和应用。我们将通过Python代码示例,展示如何实现一个简单的线性回归模型。无论你是AI新手还是有经验的开发者,这篇文章都会给你带来新的启示。让我们一起探索AI的奥秘吧!
|
2月前
|
数据采集 移动开发 数据可视化
模型预测笔记(一):数据清洗分析及可视化、模型搭建、模型训练和预测代码一体化和对应结果展示(可作为baseline)
这篇文章介绍了数据清洗、分析、可视化、模型搭建、训练和预测的全过程,包括缺失值处理、异常值处理、特征选择、数据归一化等关键步骤,并展示了模型融合技术。
70 1
模型预测笔记(一):数据清洗分析及可视化、模型搭建、模型训练和预测代码一体化和对应结果展示(可作为baseline)
|
29天前
|
机器学习/深度学习 数据采集 Python
从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略
【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。
74 1
|
1月前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?

热门文章

最新文章

相关产品

  • 人工智能平台 PAI