【数据结构与算法】之十大经典排序算法(上)

简介: 【数据结构与算法】之十大经典排序算法(上)

排序算法说明


1️⃣常见术语


稳定: 如果a原本在b前面,而a=b,排序之后a仍然在b的前面;

不稳定: 如果a原本在b的前面,而a=b,排序之后a可能会出现在b的后面;

内排序: 所有排序操作都在内存中完成;

外排序: 由于数据太大,因此把数据放在磁盘中,而排序通过磁盘和内存的数据传输才能进行;

时间复杂度: 一个算法执行所耗费的时间;

空间复杂度: 运行完一个程序所需内存的大小。


2️⃣算法总结


十大经典算法总结


e77b580be5f14f5fbb011100dede866c.png

3️⃣算法分类

be5c54a6de744040862abfd2d3b16762.png

4️⃣比较排序和非比较排序


【快速排序、归并排序、堆排序、冒泡排序】等属于比较排序。在排序的最终结果里,元素之间的次序依赖于它们之间的比较。每个数都要和其他数进行比较,才能确定自己的位置。

【计数排序、基数排序、桶排序】则属于非比较排序。非比较排序是通过确定每个元素之前,应该有多少个元素来排序。针对数组arr,计算arr[i]之前有多少个元素,则唯一确定了arr[i]在排序后数组中的位置。非比较排序只要确定每个元素之前的已有的元素个数即可,所有一次遍历即可解决。算法时间复杂度O(n)。

注意:


比较排序的优势是,适用于各种规模的数据,也不在乎数据的分布,都能进行排序。可以说,比较排序适用于一切需要排序的情况。

非比较排序时间复杂度底,但由于非比较排序需要占用空间来确定唯一位置。所以对数据规模和数据分布有一定的要求。


一、冒泡排序(Bubble Sort)


冒泡排序(Bubble Sort) 是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。


🍀算法描述


比较相邻的元素。如果第一个比第二个大,就交换它们两个;

对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;

针对所有的元素重复以上的步骤,除了最后一个;

重复步骤1~3,直到排序完成。


动图演示


dd7da5b166604e2e9c121ab436d280dd.gif


🍀代码实现

 /**
 2      * 冒泡排序
 3      *
 4      * @param array
 5      * @return
 6      */
 7     public static int[] bubbleSort(int[] array) {
 8         if (array.length == 0)
 9             return array;
10         for (int i = 0; i < array.length; i++)
11             for (int j = 0; j < array.length - 1 - i; j++)
12                 if (array[j + 1] < array[j]) {
13                     int temp = array[j + 1];
14                     array[j + 1] = array[j];
15                     array[j] = temp;
16                 }
17         return array;
18     }

🍀算法分析


最佳情况: T(n) = O(n)

最差情况: T(n) = O(n2)

平均情况: T(n) = O(n2)


二、选择排序(Selection Sort)


表现最稳定的排序算法之一,无论什么数据进去都是O(n2)的时间复杂度,所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间了吧。理论上讲,选择排序可能也是平时排序一般人想到的最多的排序方法了吧。


选择排序(Selection-sort) 是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。


🍀算法描述


n个记录的直接选择排序可经过n-1趟直接选择排序得到有序结果。具体算法描述如下:


初始状态:无序区为R[1…n],有序区为空;

第i趟排序(i=1,2,3…n-1)开始时,当前有序区和无序区分别为R[1…i-1]和R(i…n)。该趟排序从当前无序区中-选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1…i]和R[i+1…n)分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区;

n-1趟结束,数组有序化了。


🍀动图演示


73bfdccae8c14a279dc4504606319c6d.gif


🍀代码实现

   /**
     * 选择排序
     * @param array
     * @return
     */
    public static int[] selectionSort(int[] array) {
        if (array.length == 0)
            return array;
        for (int i = 0; i < array.length; i++) {
            int minIndex = i;
            for (int j = i; j < array.length; j++) {
                if (array[j] < array[minIndex]) //找到最小的数
                    minIndex = j; //将最小数的索引保存
            }
            int temp = array[minIndex];
            array[minIndex] = array[i];
            array[i] = temp;
        }
        return array;
    }


🍀算法分析


最佳情况: T(n) = O(n2)

最差情况: T(n) = O(n2)

平均情况: T(n) = O(n2)


三、插入排序(Insertion Sort)


插入排序(Insertion-Sort) 的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。


🍀算法描述


一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:


从第一个元素开始,该元素可以认为已经被排序;

取出下一个元素,在已经排序的元素序列中从后向前扫描;

如果该元素(已排序)大于新元素,将该元素移到下一位置;

重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;

将新元素插入到该位置后;

重复步骤2~5。


🍀动图演示

6799b5768722417484c5710f9a15b924.gif


🍀代码实现

/**
     * 插入排序
     * @param array
     * @return
     */
public static int[] insertionSort(int[] array) {
    if (array.length == 0)
        return array;
    int current;
    for (int i = 0; i < array.length - 1; i++) {
        current = array[i + 1];
        int preIndex = i;
        while (preIndex >= 0 && current < array[preIndex]) {
            array[preIndex + 1] = array[preIndex];
            preIndex--;
        }
        array[preIndex + 1] = current;
    }
    return array;
}


🍀算法分析


最佳情况: T(n) = O(n)

最坏情况: T(n) = O(n2)

平均情况: T(n) = O(n2)


四、希尔排序(Shell Sort)


希尔排序是希尔(Donald Shell) 于1959年提出的一种排序算法。希尔排序也是一种插入排序,它是简单插入排序经过改进之后的一个更高效的版本,也称为缩小增量排序,同时该算法是冲破O(n2)的第一批算法之一。它与插入排序的不同之处在于,它会优先比较距离较远的元素。希尔排序又叫缩小增量排序。

希尔排序是把记录按下表的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。


🍀算法描述


我们来看下希尔排序的基本步骤,在此我们选择增量gap=length/2,缩小增量继续以gap = gap/2的方式,这种增量选择我们可以用一个序列来表示,{n/2,(n/2)/2…1},称为增量序列。希尔排序的增量序列的选择与证明是个数学难题,我们选择的这个增量序列是比较常用的,也是希尔建议的增量,称为希尔增量,但其实这个增量序列不是最优的。此处我们做示例使用希尔增量。


先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,具体算法描述:


选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;

按增量序列个数k,对序列进行k 趟排序;

每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。仅增量因子为1

时,整个序列作为一个表来处理,表长度即为整个序列的长度。


🍀过程演示

44f9058b420d4bfb94af1ba5d5627246.png

🍀代码实现


/**
     * 希尔排序
     *
     * @param array
     * @return
     */
public static int[] ShellSort(int[] array) {
    int len = array.length;
    int temp, gap = len / 2;
    while (gap > 0) {
        for (int i = gap; i < len; i++) {
            temp = array[i];
            int preIndex = i - gap;
            while (preIndex >= 0 && array[preIndex] > temp) {
                array[preIndex + gap] = array[preIndex];
                preIndex -= gap;
            }
            array[preIndex + gap] = temp;
        }
        gap /= 2;
    }
    return array;
}


🍀算法分析


最佳情况: T(n) = O(nlog2 n)

最坏情况: T(n) = O(nlog2 n)

平均情况: T(n) =O(nlog2n)

相关文章
|
1月前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
47 1
|
2月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
98 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
1月前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
1月前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
1月前
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
108 23
|
1月前
|
算法
数据结构之蜜蜂算法
蜜蜂算法是一种受蜜蜂觅食行为启发的优化算法,通过模拟蜜蜂的群体智能来解决优化问题。本文介绍了蜜蜂算法的基本原理、数据结构设计、核心代码实现及算法优缺点。算法通过迭代更新蜜蜂位置,逐步优化适应度,最终找到问题的最优解。代码实现了单链表结构,用于管理蜜蜂节点,并通过适应度计算、节点移动等操作实现算法的核心功能。蜜蜂算法具有全局寻优能力强、参数设置简单等优点,但也存在对初始化参数敏感、计算复杂度高等缺点。
62 20
|
1月前
|
机器学习/深度学习 算法 C++
数据结构之鲸鱼算法
鲸鱼算法(Whale Optimization Algorithm,WOA)是由伊朗研究员Seyedali Mirjalili于2016年提出的一种基于群体智能的全局优化算法,灵感源自鲸鱼捕食时的群体协作行为。该算法通过模拟鲸鱼的围捕猎物和喷出气泡网的行为,结合全局搜索和局部搜索策略,有效解决了复杂问题的优化需求。其应用广泛,涵盖函数优化、机器学习、图像处理等领域。鲸鱼算法以其简单直观的特点,成为初学者友好型的优化工具,但同时也存在参数敏感、可能陷入局部最优等问题。提供的C++代码示例展示了算法的基本实现和运行过程。
55 0
|
1月前
|
算法 vr&ar 计算机视觉
数据结构之洪水填充算法(DFS)
洪水填充算法是一种基于深度优先搜索(DFS)的图像处理技术,主要用于区域填充和图像分割。通过递归或栈的方式探索图像中的连通区域并进行颜色替换。本文介绍了算法的基本原理、数据结构设计(如链表和栈)、核心代码实现及应用实例,展示了算法在图像编辑等领域的高效性和灵活性。同时,文中也讨论了算法的优缺点,如实现简单但可能存在堆栈溢出的风险等。
57 0
|
2月前
|
存储 算法 Java
Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性
Java Set因其“无重复”特性在集合框架中独树一帜。本文解析了Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性,并提供了最佳实践建议,包括选择合适的Set实现类和正确实现自定义对象的hashCode()与equals()方法。
53 4
|
2月前
|
搜索推荐 算法
数据结构与算法学习十四:常用排序算法总结和对比
关于常用排序算法的总结和对比,包括稳定性、内排序、外排序、时间复杂度和空间复杂度等术语的解释。
37 0
数据结构与算法学习十四:常用排序算法总结和对比