分布式事务与数据分区(三)|学习笔记

简介: 快速学习分布式事务与数据分区(三)

开发者学堂课程【PolarDB-X 开源系列课程:分布式事务与数据分区(三)】学习笔记与课程紧密联系,让用户快速学习知识

课程地址https://developer.aliyun.com/learning/course/1032/detail/15162


分布式事务与数据分区(三)

四、总结

首先 PolarDB-X 是基于存储、计算、分离和 shared nothing 架构的分布式数据库,支持数据高可用和水平扩展。那么 PolarDB-X 支持强抑制的分布式事物,它的实现背后的实现是基于 two PC MVCC  TSO。并且通过 epc 优化降低提高延迟,通过 TSO 合并优化,保证 GMS 不成为瓶颈。

通过引入透明全局索引, PolarDB-X 可以良好的兼容单机数据库上的索引使用体验,从而解决了 shared nothing 架构带来的跨分区查询性能下降的问题。

那么结合分布式事务和透明全局索引这两项技术,将后续的包括一些分区设计方面的优化综合为这个透明分布式技术。那么使用这项技术的话,可以尽可能的让用户像使用单机数据库一样的去使用 PolarDB-X 这个分布式数据库.

相关文章
|
4月前
|
存储 监控 算法
117_LLM训练的高效分布式策略:从数据并行到ZeRO优化
在2025年,大型语言模型(LLM)的规模已经达到了数千亿甚至数万亿参数,训练这样的庞然大物需要先进的分布式训练技术支持。本文将深入探讨LLM训练中的高效分布式策略,从基础的数据并行到最先进的ZeRO优化技术,为读者提供全面且实用的技术指南。
|
11月前
|
SQL
【YashanDB知识库】手工迁移Doris数据到崖山分布式
【YashanDB知识库】手工迁移Doris数据到崖山分布式
|
11月前
|
存储 分布式计算 负载均衡
数据分布式存储:在海量数据面前,我们如何站稳脚跟?
数据分布式存储:在海量数据面前,我们如何站稳脚跟?
1532 1
|
9月前
|
数据采集 存储 NoSQL
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
556 67
|
11月前
|
存储 人工智能 固态存储
DeepSeek开源周第五弹之一!3FS:支撑V3/R1模型数据访问的高性能分布式文件系统
3FS是DeepSeek开源的高性能分布式文件系统,专为AI训练和推理任务设计,提供高达6.6 TiB/s的读取吞吐量,支持强一致性保障和通用文件接口,优化AI工作负载。
1622 2
DeepSeek开源周第五弹之一!3FS:支撑V3/R1模型数据访问的高性能分布式文件系统
|
12月前
|
SQL 数据建模 BI
【YashanDB 知识库】用 yasldr 配置 Bulkload 模式作单线程迁移 300G 的业务数据到分布式数据库,迁移任务频繁出错
问题描述 详细版本:YashanDB Server Enterprise Edition Release 23.2.4.100 x86_64 6db1237 影响范围: 离线数据迁移场景,影响业务数据入库。 外场将部分 NewCIS 的报表业务放到分布式数据库,验证 SQL 性能水平。 操作系统环境配置: 125G 内存 32C CPU 2T 的 HDD 磁盘 问题出现的步骤/操作: 1、部署崖山分布式数据库 1mm 1cn 3dn 单线启动 yasldr 数据迁移任务,设置 32 线程的 bulk load 模式 2、观察 yasldr.log 是否出现如下错
|
存储 分布式计算 Hadoop
基于Java的Hadoop文件处理系统:高效分布式数据解析与存储
本文介绍了如何借鉴Hadoop的设计思想,使用Java实现其核心功能MapReduce,解决海量数据处理问题。通过类比图书馆管理系统,详细解释了Hadoop的两大组件:HDFS(分布式文件系统)和MapReduce(分布式计算模型)。具体实现了单词统计任务,并扩展支持CSV和JSON格式的数据解析。为了提升性能,引入了Combiner减少中间数据传输,以及自定义Partitioner解决数据倾斜问题。最后总结了Hadoop在大数据处理中的重要性,鼓励Java开发者学习Hadoop以拓展技术边界。
450 7
|
缓存 NoSQL PHP
Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出
本文深入探讨了Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出。文章还介绍了Redis在页面缓存、数据缓存和会话缓存等应用场景中的使用,并强调了缓存数据一致性、过期时间设置、容量控制和安全问题的重要性。
290 5