2022 年人工智能现状

简介: 如今,最新的人工智能代码研究被大型科技公司和初创公司迅速转化为商业开发工具。

image.png
谈到人工智能,过去的一年是建设性进步的一年,而不是浮华浮华的一年。蛋白质建模、循环利用和药物发现的进展。

这句话出自两位领先的风险投资家,Air Street Capital的 Nathan Benaich和 Plural 的Ian Hogarth ,他们发布了 对 AI 状况的年度总结,观察到尽管人工智能风险投资在2022年下降,但新兴智能应用领域的工作令人印象深刻。

例如,Alphabet 的 AI 子公司DeepMind现在正在为新兴科学和农业研究提供大大增强的蛋白质模型。“该公司现在已经部署了该系统来预测来自植物、细菌、动物和其他生物体的 2 亿种已知蛋白质的 3D 结构,”Benaich 和 Hogarth 报告说。“这项技术实现的从药物发现到基础科学的下游突破的程度将需要几年时间才能实现。” DeepMind 的 AlphaFold DB 于 2022 年 7 月首次发布,其中包含一百万个预测的蛋白质结构。

DeepMind的方法不仅有助于加快该领域的研究,还促进了基于矩阵乘法的技术,即人工智能、成像,以及基本上发生在我们手机上的一切,”他们补充说。

风投还报告称,主要的人工智能药物研发公司拥有18个临床资产,第一个CE标志被授予自主医学成像诊断。

风险投资公司报告说,塑料回收也取得了进展。德克萨斯大学奥斯汀分校开发的机器学习工程酶“能够降解 PET,这是一种占全球固体废物 12% 的塑料。这种称为 FAST PETase 的 PET 水解酶比现有的水解酶对不同的温度和 pH 水平更稳健。FAST PETase 能够在一周内几乎完全降解 51 种不同的产品。他们还表明,他们可以从 FAST PETase 降解中回收的单体重新合成 PET,这可能为工业规模的闭环 PET 回收开辟道路。”

此外,Benaich 和 Hogarth 报告了以下开发进展:

“用于代码研究的最新 AI 被大型科技公司和初创公司迅速转化为商业开发工具。
扩散模型以令人印象深刻的文本到图像生成能力席卷了计算机视觉世界。
人工智能攻击更多的科学问题,从塑料回收、核聚变反应堆控制和天然产物发现。
缩放定律重新关注数据:也许模型比例并不是您所需要的全部。朝着单一模型的方向发展以统治它们。
社区驱动的大型模型开源以极快的速度发生,使集体能够与大型实验室竞争。
受神经科学的启发,人工智能研究在其方法上开始看起来像认知科学。”
AI 系统背后的领先硬件平台NVIDIA也见证了其处理器尺寸和功率的显着增长。NVIDIA 的 2021 财年数据中心收入为 106 亿美元,在 2021 年第四季度,他们确认了 32.6 亿美元,“按年计算,这高于三大 AI 半导体初创公司的总估值,”Benaich 和 Hogarth 表示。“NVIDIA 在其平台上拥有超过 300 万开发人员,该公司最新一代 H100 芯片预计将提供比 A100 高 9 倍的训练性能。”

相关文章
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
软件测试中的人工智能革命:现状与未来展望
【10月更文挑战第2天】 本文深入探讨了人工智能在软件测试领域的应用现状、面临的挑战以及未来的发展方向。通过分析AI技术如何提高测试效率、准确性和自动化水平,文章揭示了AI在改变传统软件测试模式中的关键作用。同时,指出了当前AI测试工具的局限性,并对未来AI与软件测试深度融合的前景进行了展望,强调了技术创新对于提升软件质量的重要性。
50 4
|
2月前
|
机器学习/深度学习 人工智能 算法
软件测试中的人工智能:现状与未来
本文探讨了人工智能在软件测试中的应用,包括自动化测试、缺陷预测、测试用例生成等方面。通过分析当前AI技术的优势和不足,提出了未来可能的发展方向,为软件测试领域提供了新的思路和方法。
122 4
|
27天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能的发展现状如何?
【10月更文挑战第16天】人工智能的发展现状如何?
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
软件测试中的人工智能:现状与未来
【10月更文挑战第6天】 本文探讨了人工智能在软件测试中的应用,包括自动化测试、智能缺陷分析以及测试用例生成等方面。通过案例分析和未来趋势预测,文章展示了AI如何提高软件测试的效率和准确性,并指出了当前面临的挑战和未来的发展方向。
42 1
|
1月前
|
机器学习/深度学习 人工智能 算法
软件测试中的人工智能:现状与未来
本文探讨了软件测试领域中人工智能的当前应用和未来发展,分析了AI技术在提升测试效率、准确性和自动化方面的潜力。通过实例展示了AI如何帮助发现复杂缺陷,并展望了AI在软件测试中的进一步应用前景。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
软件测试中的人工智能:现状与未来
本文探讨了人工智能在软件测试中的应用,包括自动化测试、智能缺陷分析以及测试用例生成等方面。通过案例展示了AI如何提升测试效率和质量,并讨论了当前面临的挑战及未来发展趋势。
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
【专栏】Python在人工智能领域的应用现状、优势及未来趋势
【4月更文挑战第27天】本文探讨了Python在人工智能领域的应用现状、优势及未来趋势。Python作为数据科学、机器学习、深度学习和自然语言处理的首选语言,拥有丰富的库如NumPy、Pandas、TensorFlow和NLTK等。其简洁易学、跨平台和活跃社区等特点促进了AI的普及和发展。未来,Python将在强化深度学习、融合新兴技术、提高可解释性和人才培养等方面持续发挥关键作用。
1746 2
|
2月前
|
机器学习/深度学习 数据采集 人工智能
软件测试中的人工智能:现状与未来
随着人工智能技术的迅猛发展,软件测试领域正经历着深刻的变革。本文将探讨人工智能在软件测试中的应用、挑战以及未来的发展趋势,旨在为读者提供全面而深入的理解。
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能发展现状
【6月更文挑战第26天】人工智能发展现状。
81 2
|
5月前
|
人工智能 自然语言处理 搜索推荐
探索马斯克xAI与GPT模型的现状与发展:引领人工智能的未来
探索马斯克创立的xAI与"百模大战"的崛起,马斯克从对AI的担忧转向实际行动,成立xAI以追求宇宙真理。中国AI产业在竞争中崛起,多家企业推出大模型,展现出强劲实力。AI大模型发展趋势包括规模性能提升、多模态学习、个性化和自适应,以及模型的可解释性和公正性。xAI与GPT模型的出现,揭示了AI的潜力与挑战,未来将推动人机协作和模型的可持续发展。