MySQL基础——DQL语言的学习(排序查询)

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: DQL语言学习进阶三(排序查询)

DQL语言学习进阶三(排序查询)

一、语法

select 查询列表
from【where 筛选条件】 
orderby 排序列表 【asc/desc】;

(执行顺序:from—>where—>select—>order by)

1、asc:代表升序;desc:代表降序。如果不写,默认升序

2、order by子句中可以支持单个字段、多个字段、表达式、函数、别名

3、order by子句一般是放在查询语句的最后面,limit子句除外

二、示例

例1:查询员工信息,要求工资从高到低排序

select*from employee orderby salary desc

例2:查询员工信息,要求工资从低到高排序

select*from employee orderby salary ascselect*from employee orderby salary;

例3:查询部门编号大于等于90的员工信息,按入职时间的先后进行排序

select*from employee 
where department_id >=90orderby hiredate asc

例4:按年薪的高低显示员工的信息(按表达式排序)

select*,salary *12*(1+ifnull(commission_pct,)) 年薪  
from employee 
orderby salary *12*(1+ifnull(commission_pct,))desc;

例5:按年薪的高低显示员工的信息(按别名排序)

select*,salary *12*(1+ifnull(commission_pct,)) 年薪  
from employee 
orderby 年薪 desc;

例6:按姓名的长度显示员工的姓名和工资(按函数排序)

select length(last_name) 字节长度,last_name, salary 
from employee 
orderby ength(last_name)desc;

例7:查询员工信息,要求按工资排序,再按员工编号(按多个字段排序)

select*from employee 
orderby salary asc, employee_id desc;


相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
2天前
|
SQL 前端开发 关系型数据库
SpringBoot使用mysql查询昨天、今天、过去一周、过去半年、过去一年数据
SpringBoot使用mysql查询昨天、今天、过去一周、过去半年、过去一年数据
29 9
|
4天前
|
缓存 监控 关系型数据库
如何优化MySQL查询速度?
如何优化MySQL查询速度?【10月更文挑战第31天】
15 3
|
9天前
|
SQL NoSQL 关系型数据库
2024Mysql And Redis基础与进阶操作系列(5)作者——LJS[含MySQL DQL基本查询:select;简单、排序、分组、聚合、分组、分页等详解步骤及常见报错问题所对应的解决方法]
MySQL DQL基本查询:select;简单、排序、分组、聚合、分组、分页、INSERT INTO SELECT / FROM查询结合精例等详解步骤及常见报错问题所对应的解决方法
|
8天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
41 0
|
9天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第26天】数据库作为现代应用系统的核心组件,其性能优化至关重要。本文主要探讨MySQL的索引策略与查询性能调优。通过合理创建索引(如B-Tree、复合索引)和优化查询语句(如使用EXPLAIN、优化分页查询),可以显著提升数据库的响应速度和稳定性。实践中还需定期审查慢查询日志,持续优化性能。
36 0
|
27天前
|
存储 SQL 关系型数据库
Mysql学习笔记(二):数据库命令行代码总结
这篇文章是关于MySQL数据库命令行操作的总结,包括登录、退出、查看时间与版本、数据库和数据表的基本操作(如创建、删除、查看)、数据的增删改查等。它还涉及了如何通过SQL语句进行条件查询、模糊查询、范围查询和限制查询,以及如何进行表结构的修改。这些内容对于初学者来说非常实用,是学习MySQL数据库管理的基础。
104 6
|
25天前
|
存储 关系型数据库 MySQL
Mysql(4)—数据库索引
数据库索引是用于提高数据检索效率的数据结构,类似于书籍中的索引。它允许用户快速找到数据,而无需扫描整个表。MySQL中的索引可以显著提升查询速度,使数据库操作更加高效。索引的发展经历了从无索引、简单索引到B-树、哈希索引、位图索引、全文索引等多个阶段。
57 3
Mysql(4)—数据库索引
|
27天前
|
SQL Ubuntu 关系型数据库
Mysql学习笔记(一):数据库详细介绍以及Navicat简单使用
本文为MySQL学习笔记,介绍了数据库的基本概念,包括行、列、主键等,并解释了C/S和B/S架构以及SQL语言的分类。接着,指导如何在Windows和Ubuntu系统上安装MySQL,并提供了启动、停止和重启服务的命令。文章还涵盖了Navicat的使用,包括安装、登录和新建表格等步骤。最后,介绍了MySQL中的数据类型和字段约束,如主键、外键、非空和唯一等。
62 3
Mysql学习笔记(一):数据库详细介绍以及Navicat简单使用
|
10天前
|
关系型数据库 MySQL Linux
在 CentOS 7 中通过编译源码方式安装 MySQL 数据库的详细步骤,包括准备工作、下载源码、编译安装、配置 MySQL 服务、登录设置等。
本文介绍了在 CentOS 7 中通过编译源码方式安装 MySQL 数据库的详细步骤,包括准备工作、下载源码、编译安装、配置 MySQL 服务、登录设置等。同时,文章还对比了编译源码安装与使用 RPM 包安装的优缺点,帮助读者根据需求选择最合适的方法。通过具体案例,展示了编译源码安装的灵活性和定制性。
46 2
|
13天前
|
存储 关系型数据库 MySQL
MySQL vs. PostgreSQL:选择适合你的开源数据库
在众多开源数据库中,MySQL和PostgreSQL无疑是最受欢迎的两个。它们都有着强大的功能、广泛的社区支持和丰富的生态系统。然而,它们在设计理念、性能特点、功能特性等方面存在着显著的差异。本文将从这三个方面对MySQL和PostgreSQL进行比较,以帮助您选择更适合您需求的开源数据库。
54 4