基于花朵授粉算法的无线传感器网络部署优化附Matlab代码

简介: 基于花朵授粉算法的无线传感器网络部署优化附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

随着无线传感器网络(Wireless Sensor Network,WSN)技术的不断发展,越来越多的WSN技术已经应用到了智能家居,智慧交通等领域.WSN属于一种重要的ad hoc网络,它由很多具有感知和数据处理能力的传感节点以自组织或多跳的方式搭建.目前,WSN的研究工作主要集中在网络技术和通信协议方面,关于传感器网络部署优化的研究还很少.在空旷的农场或森林部署WSN,一般做法是通过飞机进行高空随机抛撒.但是,这种方法可能出现大量的多余节点和覆盖漏洞.因此,如何用尽量少的传感节点感知最大的区域是WSN部署优化中一个亟待研究的问题.在广阔的农场环境或森林中,需要准备许多传感节点,节点大部分靠电池供电,但是,电池能量是有限的,并且无法更换.因此,如何使用相同数量的节点,达到最长的网络寿命成为WSN部署优化中另一个倍受瞩目的问题.

⛄ 部分代码

%==========================================================================

% 算法说明:荧火虫算法(GSO:Glowworm swarm optimisation:a new method for optimising mutlti-modal functions)

% =========================================================================

clc

clear;%清除变量

close all;

% ================================初始化开始================================

domx=[-3,3;-3,3];%定义域

%domx=[-2.048,2.048;-2.048,2.048];


rho   =0.4; %荧光素挥发因子

gamma =0.6; %适应度提取比例

beta  =0.08;%邻域变化率

nt    =5;   %邻域阀值(邻域荧火虫数)

s     =0.01;%步长

iot0  =5;   %荧光素浓度

rs    =3;   %3;%感知半径

r0    =1.5; %3;%决策半径

% ================================初始化结束================================


% ===============================分配空间开始===============================

m =size(domx,1);    %函数空间维数

n =50;              %萤火虫个数


gaddress =zeros(n,m);%分配荧火虫地址空间

ioti     =zeros(n,1);    %分配荧光素存放空间

rdi      =zeros(n,1);     %分配荧火虫决策半径存放空间

% ===============================分配空间结束===============================

figure(1);

sign_first = 1;

step_track = 0;

x = -3:0.1:3;

y = -3:0.1:3;

[xx,yy] = meshgrid(x,y);

j1=3*(1-xx).^2.*exp(-(xx.^2+(yy+1).^2));

j2=10*(xx./5-xx.^3-yy.^5).*exp(-(xx.^2+yy.^2));

j3=(1/3)*exp(-((xx+1).^2+yy));

zz=j1-j2-j3;

figure(1);

surf(xx,yy,zz);

hold on

% ===========================荧火虫常量初始化开始============================

%1.初始化地址

for i=1:m

   gaddress(:,i)=domx(i,1)+(domx(i,2)-domx(i,1))*rand(n,1);

end

gvalue = maxfun(gaddress);

gbest_old = max(gvalue);

%

%可视化

plot3(gaddress(:,1),gaddress(:,2),gvalue(:),'b*');

drawnow;

pause(1);

%

%2.初始化荧光素

ioti(:,1)=iot0;

%3.初始化决策半径

rdi(:,1)=r0;

iter_max=500;%最大迭代次数

t=1;%迭代累计

unchange = 0;

% ===========================荧火虫常量初始化结束============================


% =============================iter_max迭代开始=============================

while(t<=iter_max) && (unchange<60)

   %1.更新荧光素

   ioti=max(0,(1-rho)*ioti+gamma*maxfun(gaddress));

   %2.各荧火虫移动过程开始

   for i=1:n

       %2.1 决策半径内找更优点

       Nit=[];%存放荧火虫序号

       for j=1:n

           if (norm(gaddress(j,:)-gaddress(i,:))<rdi(i))&&(ioti(i,1)<ioti(j,1))

               Nit(numel(Nit)+1)=j;

           end

       end

       %2.2 找下一步移动的点开始

       if length(Nit)>0 %先判断Nit个数不为0

           Nitioti=ioti(Nit,1);%选出Nit荧光素

           SumNitioti=sum(Nitioti);%Nit荧光素和

           Molecular=Nitioti-ioti(i,1);%分子

           Denominator=SumNitioti-ioti(i,1);%分母

           Pij=Molecular./Denominator;%计算Nit各元素被选择概率

           Pij=cumsum(Pij);%累计

           Pij=Pij./Pij(end);%归一化

           Pos=find(rand<Pij);%确定位置

           j=Nit(Pos(1));%确定j的位置

           %荧火虫i向j移动一小步

           gaddress(i,:)=gaddress(i,:)+s*(gaddress(j,:)-gaddress(i,:))/norm(gaddress(j,:)-gaddress(i,:));

           gaddress(i,:)=range(gaddress(i,:),domx);%限制范围

           

           %

           %更新决策半径

           rdi(i)=rdi(i)+beta*(nt-length(Nit));

           if rdi(i,1)<0

               rdi(i,1)=0;

           end

           if rdi(i,1)>rs

               rdi(i,1)=rs;

⛄ 运行结果

⛄ 参考文献

[1]郎健. 无线传感器网络部署优化研究与仿真[D]. 北京工业大学.

[2]王振东, 谢华茂, 胡中栋,等. 改进花朵授粉算法的无线传感器网络部署优化[J]. 系统仿真学报, 2021.

⛄ Matlab代码关注

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
12天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
6天前
|
存储 关系型数据库 分布式数据库
PolarDB的PolarStore存储引擎以其高效的索引结构、优化的数据压缩算法、出色的事务处理能力著称
PolarDB的PolarStore存储引擎以其高效的索引结构、优化的数据压缩算法、出色的事务处理能力著称。本文深入解析PolarStore的内部机制及优化策略,包括合理调整索引、优化数据分布、控制事务规模等,旨在最大化其性能优势,提升数据存储与访问效率。
18 5
|
20天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
21天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
15天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
58 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
21天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
205 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
131 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
95 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度