【交通标志识别】基于BP神经网络实现交通标志识别系统(含语音报警)附matlab代码

简介: 【交通标志识别】基于BP神经网络实现交通标志识别系统(含语音报警)附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

随着城市化的进展,汽车的普及,机动车数量、出行人数的大量增加,路网通过能力难以满足交通量快速增长的需要,交通拥挤加剧,交通事故频发,公路交通的安全以及运输效率问题变得日益突出,智能交通系统(Intelligent Transportation System,ITS)被认为是解决这些问题的基本手段,ITS是一个集通讯、检测、控制和计算机技术于一体的综合系统,对保障交通系统的运行安全及运输效率,促进国民经济的发展有重要的意义和经济价值。目前,智能交通系统在我国发展迅速,且已正式列入“十一五”发展规划,驾驶安全问题、城市交通堵塞问题、运输效率问题都有望通过对车辆信息化和智能化的改造获得改善,基于图像检测与处理技术的交通标志识别系统作为智能交通系统的一个重要的子系统,已逐渐成为目前智能交通系统国内外研究的热点。

⛄ 部分代码

X=imread('2.jpg');      %更换测试图片

X=out_final;

TeM=rgb2gray(X);

TeM=histeq(TeM);

Televel=graythresh(TeM);   %找到灰度图像M的自适应阈值分割的阈值

TeBW=im2bw(TeM,Televel);     %转换到二值图像,灰度值>M,另为1,否者为0

J=~imresize(TeBW,[32,32]);  

figure;imshow(TeBW);

figure;imshow(J);=5;

i11=imread('m1.jpg');

i22=imread('m2.jpg');

i33=imread('m3.jpg');

i44=imread('m4.jpg');

i55=imread('m5.jpg');

for i=1:t

I=imread(['m',num2str(i),'.jpg']);

TrM=rgb2gray(I);

str=imread([num2str(T1),'.jpg']);

figure;

subplot(121);

imshow(X);title('测试图标');

subplot(122);

imshow(str);title('实验结果');

⛄ 运行结果

⛄ 参考文献

[1]鲁寒凝. 基于HOG特征的交通标志检测与识别算法研究[D]. 长安大学.

⛄ Matlab代码关注

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料
相关文章
|
2月前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
208 80
|
1月前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
120 10
|
2月前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
2月前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析不同码长,码率,迭代次数以及信道类型对译码性能的影响
本内容介绍基于MATLAB 2022a的低密度奇偶校验码(LDPC)仿真,展示了完整的无水印仿真结果。LDPC是一种逼近香农限的信道编码技术,广泛应用于现代通信系统。BP译码算法通过Tanner图上的消息传递实现高效译码。仿真程序涵盖了不同Eb/N0下的误码率计算,并分析了码长、码率、迭代次数和信道类型对译码性能的影响。核心代码实现了LDPC编码、BPSK调制、高斯信道传输及BP译码过程,最终绘制误码率曲线并保存数据。 字符数:239
82 5
|
3月前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
2月前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
4月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于BP神经网络的苦瓜生长含水量预测模型matlab仿真
本项目展示了基于BP神经网络的苦瓜生长含水量预测模型,通过温度(T)、风速(v)、模型厚度(h)等输入特征,预测苦瓜的含水量。采用Matlab2022a开发,核心代码附带中文注释及操作视频。模型利用BP神经网络的非线性映射能力,对试验数据进行训练,实现对未知样本含水量变化规律的预测,为干燥过程的理论研究提供支持。
|
3月前
|
机器学习/深度学习 算法 关系型数据库
基于PSO-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目展示了利用粒子群优化(PSO)算法优化支持向量机(SVM)参数的过程,提高了分类准确性和泛化能力。包括无水印的算法运行效果预览、Matlab2022a环境下的实现、核心代码及详细注释、操作视频,以及对PSO和SVM理论的概述。PSO-SVM结合了PSO的全局搜索能力和SVM的分类优势,特别适用于复杂数据集的分类任务,如乳腺癌诊断等。
|
4月前
|
机器学习/深度学习 算法 5G
基于BP神经网络的CoSaMP信道估计算法matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
本文介绍了基于Matlab 2022a的几种信道估计算法仿真,包括LS、OMP、NOMP、CoSaMP及改进的BP神经网络CoSaMP算法。各算法针对毫米波MIMO信道进行了性能评估,通过对比不同信噪比下的均方误差(MSE),展示了各自的优势与局限性。其中,BP神经网络改进的CoSaMP算法在低信噪比条件下表现尤为突出,能够有效提高信道估计精度。
86 2
|
4月前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析码长,码率,信道对译码性能的影响,对比卷积码,turbo码以及BCH码
本程序系统基于BP译码的LDPC误码率MATLAB仿真,分析不同码长、码率、信道对译码性能的影响,并与卷积码、Turbo码及BCH编译码进行对比。升级版增加了更多码长、码率和信道的测试,展示了LDPC码的优越性能。LDPC码由Gallager在1963年提出,具有低复杂度、可并行译码等优点,近年来成为信道编码研究的热点。程序在MATLAB 2022a上运行,仿真结果无水印。
78 0

热门文章

最新文章