Python连接MongoDB操作

本文涉及的产品
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
简介: Python连接MongoDB操作

1.安装PyMongo

注意:请勿安装“bson”软件包。 PyMongo配有自己的bson包; 执行“pip install bson”或“easy_install bson”则会安装与PyMongo不兼容的第三方软件包。

使用pip安装

我们建议在所有平台上使用pip来安装pymongo:

C:\Users\Administrator>python -m pip install pymongo
Collecting pymongo
  Downloading pymongo-3.4.0.tar.gz (583kB)
... ....
Installing collected packages: pymongo
  Running setup.py install for pymongo ... done
Successfully installed pymongo-3.4.0
Shell

要获得pymongo的特定版本:

$ python -m pip install pymongo==3.1.1
Shell

要升级pymongo的版本:

$ python -m pip install --upgrade pymongo
Shell

Python版本依赖

PyMongo支持CPython 2.6,2.7,3.3+,PyPy和PyPy3。

GSSAPI和TLS的可选依赖关系:

GSSAPI认证需要Windows上的Unix或WinKerberos上的pykerberos。PyMongo可以自动安装正确的依赖关系:

$ python -m pip install pymongo[gssapi]
Shell

2.使用MongoClient建立连接

使用PyMongo时,第一步是运行 mongod 实例创建一个MongoClient。如下:

from pymongo import MongoClient
client = MongoClient()
Python

上述代码将连接默认主机和端口。 也可以明确指定主机和端口,如下所示:

from pymongo import MongoClient
#client = MongoClient()
client = MongoClient('localhost', 27017)
Python

或使用MongoDB URI格式:

client = MongoClient('mongodb://localhost:27017/')
Python

3.获取数据库

MongoDB的一个实例可以支持多个独立的数据库。 在使用PyMongo时,可以使用MongoClient实例上的属性的方式来访问数据库:

db = client.pythondb
Python

如果数据库名称使用属性方式访问无法正常工作(如:python-db),则可以使用字典样式访问:

db = client['python-db']
Python

4.获取集合

集合是存储在MongoDB中的一组文档,可以类似于关系数据库中的表。 在PyMongo中获取集合的工作方式与获取数据库相同:

collection = db.python_collection
Shell

或(使用字典方式访问):

collection = db['python-collection']
Shell

MongoDB中关于集合(和数据库)的一个重要注意事项是它们是懒创建的 - 上述任何命令都没有在MongoDB服务器上实际执行任何操作。当第一个文档插入集合时才创建集合和数据库。

集合是存储在MongoDB中的一组文档,可以被认为大致相当于关系数据库中的表。 在PyMongo中获取集合的工作方式与获取数据库相同:

5.文档

MongoDB中的数据使用JSON方式来表示文档(并存储)。 在PyMongo中使用字典来表示文档。例如,以下字典可能用于表示博客文章:

import datetime
from pymongo import MongoClient
client = MongoClient()
post = {"author": "Mike",
         "text": "My first blog post!",
         "tags": ["mongodb", "python", "pymongo"],
         "date": datetime.datetime.utcnow()}
`
Python

6.插入文档

要将文档插入到集合中,可以使用insert_one()方法:

#!/usr/bin/python3
#coding=utf-8
import datetime
from pymongo import MongoClient
client = MongoClient()
db = client.pythondb
post = {"author": "Maxsu",
         "text": "My first blog post!",
         "tags": ["mongodb", "python", "pymongo"],
         "date": datetime.datetime.utcnow()}
posts = db.posts
post_id = posts.insert_one(post).inserted_id
print ("post id is ", post_id)
Python

执行上面代码,得到以下结果 -

post id is  595965fe4959eb09c4451091
Shell

插入文档时,如果文档尚未包含“_id”键,则会自动添加“_id”。 “_id”的值在集合中必须是唯一的。 insert_one()返回一个InsertOneResult的实例。 有关“_id”的更多信息,请参阅有关_id文档

插入第一个文档后,实际上已经在服务器上创建了帖子(posts)集合。可以列出数据库中的所有集合:

#!/usr/bin/python3
#coding=utf-8
import datetime
from pymongo import MongoClient
client = MongoClient()
db = client.pythondb
"""
post = {"author": "Maxsu",
         "text": "My first blog post!",
         "tags": ["mongodb", "python", "pymongo"],
         "date": datetime.datetime.utcnow()}
posts = db.posts
post_id = posts.insert_one(post).inserted_id
print ("post id is ", post_id)
"""
cur_collection = db.collection_names(include_system_collections=False)
print("cur_collection is :", cur_collection)
Python

执行上面代码,得到以下结果 -

cur_collection is : ['posts']
Shell

7.使用find_one()获取单个文档

MongoDB中执行的最基本的查询类型是find_one()。 此方法返回与查询匹配的单个文档(如果没有匹配,则返回None)。 当知道只有一个匹配的文档,或只对第一个匹配感兴趣时则可考虑使用find_one()方法。下面示例中使用find_one()从帖子(posts)集中获取第一个文档:

#!/usr/bin/python3
#coding=utf-8
import datetime
import pprint
from pymongo import MongoClient
client = MongoClient()
db = client.pythondb
'''
post = {"author": "Maxsu",
         "text": "My first blog post!",
         "tags": ["mongodb", "python", "pymongo"],
         "date": datetime.datetime.utcnow()}
'''
posts = db.posts
#post_id = posts.insert_one(post).inserted_id
#print ("post id is ", post_id)
pprint.pprint(posts.find_one())
Python

执行上面代码,得到以下结果 -

{'_id': ObjectId('595965fe4959eb09c4451091'),
 'author': 'Maxsu',
 'date': datetime.datetime(2017, 7, 2, 21, 30, 38, 402000),
 'tags': ['mongodb', 'python', 'pymongo'],
 'text': 'My first blog post!'}
Shell

结果是匹配之前插入的字典格式(Json)。注意: 返回的文档包含一个“_id”,它是在插入时自动添加的。

find_one()方法还支持查询结果文档必须匹配的特定元素。要查询作者是“Maxsu”的文档,可以指定查询的条件,如下所示:

#!/usr/bin/python3
#coding=utf-8
import datetime
import pprint
from pymongo import MongoClient
client = MongoClient()
db = client.pythondb
post = {"author": "Minsu",
         "text": "This blog post belong to Minsu!",
         "tags": ["MySQL", "Oracle", "pymongo"],
         "date": datetime.datetime.utcnow()}
posts = db.posts
post_id = posts.insert_one(post).inserted_id
post = posts.find_one({"author": "Maxsu"})
pprint.pprint(post)
#print (post)
Python

执行上面代码,得到以下结果 -

{'_id': ObjectId('595965fe4959eb09c4451091'),
 'author': 'Maxsu',
 'date': datetime.datetime(2017, 7, 2, 21, 30, 38, 402000),
 'tags': ['mongodb', 'python', 'pymongo'],
 'text': 'My first blog post!'}
Shell

8.通过ObjectId查询

也可以通过它的_id找到一个帖子(post),下面的示例子中演示如何根据给定的一个ObjectId查询数据:

#!/usr/bin/python3
#coding=utf-8
import datetime
import pprint
from pymongo import MongoClient
client = MongoClient()
db = client.pythondb
post = {"_id": 100,
         "author": "Kuber",
         "text": "This is is my first post!",
         "tags": ["Docker", "Shell", "pymongo"],
         "date": datetime.datetime.utcnow()}
posts = db.posts
post_id = posts.insert_one(post).inserted_id
print("post_id is :", post_id)
post = posts.find_one({"_id": post_id})
print("Find By Post ID:")
pprint.pprint(post)
#print (post)
Python

执行上面代码,得到以下结果 -

post_id is : 100
Find By Post ID:
{'_id': 100,
 'author': 'Kuber',
 'date': datetime.datetime(2017, 7, 3, 14, 14, 8, 28000),
 'tags': ['Docker', 'Shell', 'pymongo'],
 'text': 'This is is my first post!'}
Shell

Web应用程序中的常见任务是从请求URL获取ObjectId并找到匹配的文档。 在这种情况下,必须将ObjectId从一个字符串转换到find_one()

from bson.objectid import ObjectId
# The web framework gets post_id from the URL and passes it as a string
def get(post_id):
    # Convert from string to ObjectId:
    document = client.db.collection.find_one({'_id': ObjectId(post_id)})
Python

9.关于Unicode字符串的注释

您可能已经注意到,我们先前存储的常规Python字符串在从服务器检索时看起来是不同的(例如,u’Mike而不是“Mike”)。一个简短的解释是有序的字符串。

MongoDB以BSON格式存储数据。BSON字符串是UTF-8编码的,所以PyMongo必须确保它存储的任何字符串只包含有效的UTF-8数据。 常规字符串(<type'str'>)被验证并保存不变。 Unicode字符串(<type'unicode'>)首先被编码为UTF-8。 我们的示例字符串在Python shell中表示为u'Mike而不是“Mike”的原因是PyMongo将每个BSON字符串解码为Python unicode字符串,而不是常规str。

10.批量插入

为了执行更复杂一些的查询,我们再插入一些文档。 除了插入单个文档外,还可以通过将列表作为第一个参数传递给insert_many()来执行批量插入操作。 这将在列表中插入每个文档,只向服务器发送一个命令:

#!/usr/bin/python3
#coding=utf-8
import datetime
import pprint
from pymongo import MongoClient
client = MongoClient()
db = client.pythondb
new_posts = [{"_id": 1000,
               "author": "Curry",
               "text": "Another post!",
               "tags": ["bulk", "insert"],
               "date": datetime.datetime(2017, 11, 12, 11, 14)},
              {"_id": 1001,"author": "Maxsu",
               "title": "MongoDB is fun",
               "text": "and pretty easy too!",
               "date": datetime.datetime(2019, 11, 10, 10, 45)}]
posts = db.posts
result = posts.insert_many(new_posts)
print("Bulk Inserts Result is :", result.inserted_ids)
#print (post)
Python

执行上面代码,得到以下结果 -

Bulk Inserts Result is : [1000, 1001]
Shell

有几个有趣的事情要注意这个例子:

  • insert_many()的结果现在返回两个ObjectId实例,每个ID表示插入的一个文档。
  • new_posts[1]具有与其他帖子不同的“形状”(数据结构) - 没有“tags”字段,添加了一个新字段“title”。MongoDB是无模式的,表示的就是这个意思。

11.查询多个文档

要查询获得超过单个文档作为查询的结果,可使用find()方法。find()返回一个Cursor实例,它允许遍历所有匹配的文档。如下示例,遍历帖子集合中的每个文档:

#!/usr/bin/python3
#coding=utf-8
import datetime
import pprint
from pymongo import MongoClient
client = MongoClient()
db = client.pythondb
posts = db.posts
for post in posts.find():
    pprint.pprint(post)
Python

执行上面代码,得到以下结果 -

{'_id': ObjectId('595965fe4959eb09c4451091'),
 'author': 'Maxsu',
 'date': datetime.datetime(2017, 7, 2, 21, 30, 38, 402000),
 'tags': ['mongodb', 'python', 'pymongo'],
 'text': 'My first blog post!'}
{'_id': 100,
 'author': 'Kuber',
 'date': datetime.datetime(2017, 7, 3, 14, 14, 8, 28000),
 'tags': ['Docker', 'Shell', 'pymongo'],
 'text': 'This is is my first post!'}
{'_id': 1000,
 'author': 'Curry',
 'date': datetime.datetime(2017, 11, 12, 11, 14),
 'tags': ['bulk', 'insert'],
 'text': 'Another post!'}
{'_id': 1001,
 'author': 'Maxsu',
 'date': datetime.datetime(2019, 11, 10, 10, 45),
 'text': 'and pretty easy too!',
 'title': 'MongoDB is fun'}
Shell

类似使用find_one()一样,我们可以将文档传递给find()来限制返回的结果。 在这里,只希望得到作者是“Maxsu”的文档:

#!/usr/bin/python3
#coding=utf-8
import datetime
import pprint
from pymongo import MongoClient
client = MongoClient()
db = client.pythondb
posts = db.posts
for post in posts.find({"author": "Maxsu"}):
    pprint.pprint(post)
Python

执行上面的代码,得到以下结果 -

{'_id': ObjectId('595965fe4959eb09c4451091'),
 'author': 'Maxsu',
 'date': datetime.datetime(2017, 7, 2, 21, 30, 38, 402000),
 'tags': ['mongodb', 'python', 'pymongo'],
 'text': 'My first blog post!'}
{'_id': 1001,
 'author': 'Maxsu',
 'date': datetime.datetime(2019, 11, 10, 10, 45),
 'text': 'and pretty easy too!',
 'title': 'MongoDB is fun'}
Shell

12.计数统计

如果只想知道有多少文档匹配查询,可以执行count()方法操作,而不是一个完整的查询。 可以得到一个集合中的所有文档的计数:

#!/usr/bin/python3
#coding=utf-8
import datetime
import pprint
from pymongo import MongoClient
client = MongoClient()
db = client.pythondb
posts = db.posts
print("posts count is = ", posts.count())
print("posts's author is Maxsu count is =", posts.find({"author": "Maxsu"}).count())
Python

执行上面代码,得到以下结果 -

posts count is =  4
posts's author is Maxsu count is = 2
Shell

13.范围查询

MongoDB支持许多不同类型的高级查询。例如,可以执行一个查询,将结果限制在比特定日期更早的帖子,而且还可以按作者对结果进行排序:

#!/usr/bin/python3
#coding=utf-8
import datetime
import pprint
from pymongo import MongoClient
client = MongoClient()
db = client.pythondb
posts = db.posts
d = datetime.datetime(2019, 11, 12, 12)
for post in posts.find({"date": {"$lt": d}}).sort("author"):
    pprint.pprint(post)
Python

这里使用特殊的“$lt”运算符做范围查询,并且还可以调用sort()来按作者对结果进行排序。

14.索引

添加索引可以帮助加速某些查询,并且还可以添加额外的功能来查询和存储文档。在这个例子中,将演示如何在一个键上创建一个唯一的索引,该索引将拒绝已经存在值的文档插入。

首先,我们创建索引:

result = db.profiles.create_index([('user_id', pymongo.ASCENDING)], unique=True)
sorted(list(db.profiles.index_information()))
Python

请注意,现在有两个索引:一个是MongoDB自动创建的在_id索引,另一个是刚刚创建在user_id上的索引。

现在来设置一些用户配置文件:

user_profiles = [{'user_id': 211, 'name': 'Luke'},{'user_id': 212, 'name': 'Ziltoid'}]
result = db.profiles.insert_many(user_profiles)
Python

该索引将阻止 user_id 已经在集合中的文档插入:

new_profile = {'user_id': 213, 'name': 'Drew'}
duplicate_profile = {'user_id': 212, 'name': 'Tommy'}
result = db.profiles.insert_one(new_profile)  # This is fine.
result = db.profiles.insert_one(duplicate_profile)
## 出现错误提示...
Traceback (most recent call last):
DuplicateKeyError: E11000 duplicate key error index: test_database.profiles.$user_id_1 dup key: {


相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。 &nbsp; 相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
相关文章
|
1月前
|
关系型数据库 MySQL 数据库连接
python脚本:连接数据库,检查直播流是否可用
【10月更文挑战第13天】本脚本使用 `mysql-connector-python` 连接MySQL数据库,检查 `live_streams` 表中每个直播流URL的可用性。通过 `requests` 库发送HTTP请求,输出每个URL的检查结果。需安装 `mysql-connector-python` 和 `requests` 库,并配置数据库连接参数。
128 68
|
2月前
|
NoSQL 网络安全 MongoDB
MongoDB - 连接
10月更文挑战第12天
18 1
|
2月前
|
IDE 网络安全 开发工具
IDE之pycharm:专业版本连接远程服务器代码,并配置远程python环境解释器(亲测OK)。
本文介绍了如何在PyCharm专业版中连接远程服务器并配置远程Python环境解释器,以便在服务器上运行代码。
377 0
IDE之pycharm:专业版本连接远程服务器代码,并配置远程python环境解释器(亲测OK)。
|
1月前
|
测试技术 API 数据安全/隐私保护
Python连接到Jira实例、登录、查询、修改和创建bug
通过使用Python和Jira的REST API,可以方便地连接到Jira实例并进行各种操作,包括查询、修改和创建Bug。`jira`库提供了简洁的接口,使得这些操作变得简单易行。无论是自动化测试还是开发工作流的集成,这些方法都可以极大地提高效率和准确性。希望通过本文的介绍,您能够更好地理解和应用这些技术。
100 0
|
2月前
|
NoSQL 前端开发 JavaScript
Node.js 连接 MongoDB
10月更文挑战第20天
37 0
|
3月前
|
NoSQL MongoDB 数据库
python3操作MongoDB的crud以及聚合案例,代码可直接运行(python经典编程案例)
这篇文章提供了使用Python操作MongoDB数据库进行CRUD(创建、读取、更新、删除)操作的详细代码示例,以及如何执行聚合查询的案例。
34 6
|
2月前
|
SQL Oracle 关系型数据库
Python连接Oracle
Python连接Oracle
22 0
|
3月前
|
NoSQL Linux Redis
linux安装单机版redis详细步骤,及python连接redis案例
这篇文章提供了在Linux系统中安装单机版Redis的详细步骤,并展示了如何配置Redis为systemctl启动,以及使用Python连接Redis进行数据操作的案例。
79 2
|
2月前
|
NoSQL 前端开发 JavaScript
Node.js 连接 MongoDB
10月更文挑战第9天
52 0
|
3月前
|
Unix Linux 网络安全
python中连接linux好用的模块paramiko(附带案例)
该文章详细介绍了如何使用Python的Paramiko模块来连接Linux服务器,包括安装配置及通过密码或密钥进行身份验证的示例。
117 1