如何使用 PAI-Studio 可视化构建模型到部署|学习笔记

本文涉及的产品
交互式建模 PAI-DSW,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,5000CU*H 3个月
简介: 快速学习如何使用 PAI-Studio 可视化构建模型到部署。

开发者学堂课程【PAL 平台学习路线:机器学习入门到应用:如何使用 PAI-Studio 可视化构建模型到部署】学习笔记,与课程紧密联系,让用户快速学习知识。

课程地址:https://developer.aliyun.com/learning/course/855/detail/14228


如何使用 PAI-Studio 可视化构建模型到部署

 

内容介绍:

一、内容总述

二、演示

 

一、内容总述

如何使用 PAI-Studio 可视化构建模型到部署的一系列流程;PAI-Studio 内置的把语种算法组件,通过算法组件用户可以通过拖拉拽的方式构建机器学习和深度学习的流程。

 

二、演示

首先登录 PAI 控制台。确认完成实名认证,在左侧的导航栏选择模型的开发和训练,选择可视化建模,再此页面单击创建项目。

 图片47.png

在创建项目的对话框中。选择 MAXcompute 的计费类型并且输入项目名称,其他参数可使用默认配置。之后选择使用的 GPU 项目才能使用深度学习组件。PAI 支持使用 MAXcompute 和 OSS 储存数据。

单机 PAI 的项目操作列下的进入机器学习,MC 主要用来储存表结构数据,用于常规算法。而 OSS 储存结构包括非结构化储存数据用于深度学习算法。点击首页可在项目里创建实验,可以新建空白实验或者从模板里面选择。

Studio 提供的可视化学习允许用户使用拖拉拽的方式实现0代码开发人工智能。同时 Studio 里面预置了算法组件,可以将组件拖入画布中,然后通过箭头将不同的组件拼接为实验,还可以将拼接好的实验保存为模板再次使用。

机器学习工作流需要首先配置数据源。读取数据表组件用于读取 MAX-compute 数据源,默认读取本项目的表数据。如果跨项目读取数据就要在表前添加工程名,这个 PAI-online-project 项目下的表都是公开的,任何用户都可以使用。在右侧表选择页面,输入已经创建的表名,然后点击字段信息页可以查看输入表的字段、数据类型以及前十条记录范围。

然后对原始数据进行数据预处理。在表的列表将数据预处理下的类型转换和归一化组件拖入画布中。之后在表组件列表中工具下的SQL副本拖入画布中。然后再依次拖入整个机器学习流程需要的组件。拆分组件可以将数据集拆分为训练集和测试集。然后拖入逻辑回归二分类的算法模型。之后再依次拖入测试集和混淆矩阵以及最后的评估模型的组件。

现在用箭头将机器学习的各流程的组件拼接为更完整的组件,可以将拼接好的组件保存为模板下次使用。

图片48.png

单机画布中的 SQL 脚本组件,在右侧 SQL 脚本编辑框中输入 SQL 可以将字符型字段转化为数值型。点击执行到此处后,选择转化类型组件和归一化组件,在右侧的字段设置页中选择所有字段。拆分方式如无特殊需求可以按照默认的比例拆分。

单机画布中的逻辑回归二分类组件,在右侧字段设置页签,将目标列设置成 ifhealth 再将训练特征列设置为除目标外的所有列。如下图所示:

 图片49.png

然后单机预测组件,选择执行到此处。然后同样的单机预测组件,在右侧字段设置页签,将目标列设置为 ifhealth;然后将训练特征列设置成除目标列外的所有列。同样将混淆矩阵也做相应的设置。

在二分类评估这里也把原始的标签列名选择为 ifhealth,单机执行该组件。

 图片50.png

当每一个组件的旁边都出现这样的绿色对勾之后就证明每一步都是跑通了的。

PAI-Studio 还提供了数据可视化的功能,将统计分析下的全表统计-1拖入画布,并与数据预处理中的组件拼接为实验。这里我们将他把数据转化类型的组件拼接在一起。在右侧字段设置的地方选择所有字段,右键选择执行该节点。

执行结束后右键单击画布中的全表统计组件在快捷菜单单击查看数据可以查看数据的全表统计信息。

同样在实验运行结束后右键单击画布中的二分类评估组件,点击查看评估报告,在图表页可以查看在不同参数的情况下二分类训练模型下的 ROC 曲线。

 图片51.png

运行好的实验会保存在我的实验,也可以从首页的模板直接创建刚刚运行的实验。大概需要等待10秒左右的时间,等待实验从模板中创建。创建成功的实验就和刚刚运行的实验是一样的。

运行好的模型可以部署成在线服务,也可以运行成离线调度实验。现在将刚刚跑好的模型部署成在线服务,选择逻辑回归二分类。

会自动跳转到 PAI-EAS 模型在线服务,只要自定义模型名称,选择所需要的资源类型,点击确定即可部署模型还可以选择模型部署占用的资源。需要稍等一会,会显示在创建中。

当模型状态从部署中到运营中就说明模型成功部署为一个服务了。

如果不需要的时候可以选择停止操作,防止产生不必要的费用产生。

这个案例内使用的组件都是机器学习上的组件。如果想要使用深度学习的组件,需要确保已经开启了GPU的资源。

深度学习框架组件包括 tensorflow、caffe、MXMet、pytorch 深度学习框架。在使用深度学习框架训练数据之前需要上传训练数据对象 OSS 数据中。算法在运行时从指定 OSS 目录中读取数据。算法在执行访问同一区域下 OSS 中,数据是不产生流量费用。访问其他地域的OSS会产生流量费用。读取数据表时默认读取 ODPS 的数据表。如果要读取OSS的数据就要选择读取 OSS 的这个组件。

PAI-Studio 还包括时间序列文本和针对金融场景的金融板块等组件

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
9天前
|
机器人
1024 云上见 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建 “文旅领域知识问答机器人” 领精美计时器
1024 云上见 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建 “文旅领域知识问答机器人” 领精美计时器
54 3
|
1天前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?
|
7天前
|
机器人
1024 云上见 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建 “文旅领域知识问答机器人” 领 200个 精美计时器等你领
1024 云上见 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建 “文旅领域知识问答机器人” 领 200个 精美计时器等你领
45 2
|
14天前
|
机器学习/深度学习 前端开发 网络架构
Django如何调用机器学习模型进行预测
Django如何调用机器学习模型进行预测
43 5
|
13天前
|
机器学习/深度学习 算法 Python
深度解析机器学习中过拟合与欠拟合现象:理解模型偏差背后的原因及其解决方案,附带Python示例代码助你轻松掌握平衡技巧
【10月更文挑战第10天】机器学习模型旨在从数据中学习规律并预测新数据。训练过程中常遇过拟合和欠拟合问题。过拟合指模型在训练集上表现优异但泛化能力差,欠拟合则指模型未能充分学习数据规律,两者均影响模型效果。解决方法包括正则化、增加训练数据和特征选择等。示例代码展示了如何使用Python和Scikit-learn进行线性回归建模,并观察不同情况下的表现。
123 3
|
12天前
|
人工智能 算法 测试技术
PAI 大语言模型评测平台现已支持裁判员模型评测
本文将为您介绍如何在 PAI 大语言模型评测平台,基于裁判员模型,评价开源模型或者微调后模型的性能。该功能限时免费,欢迎使用。
|
13天前
|
机器学习/深度学习 数据挖掘 Serverless
手把手教你全面评估机器学习模型性能:从选择正确评价指标到使用Python与Scikit-learn进行实战演练的详细指南
【10月更文挑战第10天】评估机器学习模型性能是开发流程的关键,涉及准确性、可解释性、运行速度等多方面考量。不同任务(如分类、回归)采用不同评价指标,如准确率、F1分数、MSE等。示例代码展示了使用Scikit-learn库评估逻辑回归模型的过程,包括数据准备、模型训练、性能评估及交叉验证。
32 1
|
18天前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
5天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
14天前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
34 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练

相关产品

  • 人工智能平台 PAI