《Spark核心技术与高级应用》——1.2节Spark的重要扩展

简介:

本节书摘来自华章社区《Spark核心技术与高级应用》一书中的第1章,第1.2节Spark的重要扩展,作者于俊 向海 代其锋 马海平,更多章节内容可以访问云栖社区“华章社区”公众号查看

1.2 Spark的重要扩展
大家知道,在Hadoop中完成即席查询(ad-hoc queries)、批处理(batch processing),流式处理(stream processing),需要构建不同的团队,每个团队需要不同的技术和经验,很难做到共享。而Spark实现了平台融合,一个基础平台解决所有的问题,一个团队拥有相同的技术和经验完成所有的任务。
基于Spark的基础平台扩展了5个主要的Spark库,包括支持结构化数据的Spark SQL、处理实时数据的Spark Streaming、用于机器学习的MLlib、用于图计算的GraphX、用于统计分析的SparkR,各种程序库与Spark核心API高度整合在一起,并在持续不断改进。
1.2.1 Spark SQL和DataFrame
Spark SQL是Spark的一个处理结构化数据的模块,提供一个DataFrame编程抽象。它可以看作是一个分布式SQL查询引擎,主要由Catalyst优化、Spark SQL内核、Hive支持三部分组成。
相对于传统的MapReduce API,Spark的RDD API有了数量级的飞跃,从Spark SQL 1.3.0开始,在原有SchemaRDD的基础上提供了与R风格类似的DataFrame API。
DataFrame是以指定列(named columns)组织的分布式数据集合,在Spark SQL中,相当于关系数据库的一个表,或R/Python的一个数据框架,但后台更加优化。
DataFrames支持多种数据源构建,包括:结构化数据文件(Parquet、JSON)加载、Hive表读取、外部数据库读取、现有RDD转化,以及SQLContext运行SQL查询结果创建DataFrame,如图1-4所示。


f24eee7b6828db429f8aa570dfa0b80ae972f170

新的DataFrame API一方面大幅度降低了开发者学习门槛,同时支持Scala、Java、Python和R语言,且支持通过Spark Shell、Pyspark Shell和SparkR Shell提交任务。由于来源于SchemaRDD,DataFrame天然适用于分布式大数据场景。
关于Spark SQL更具体的内容和案例会在后面第6章详细介绍。
1.2.2 Spark Streaming
Spark Streaming属于核心Spark API的扩展,它支持高吞吐量和容错的实时流数据处理,它可以接受来自Kafka、Flume、Twitter、ZeroMQ或TCP Socket的数据源,使用复杂的算法表达和高级功能来进行处理,如Map、Reduce、Join、Window等,处理的结果数据能够存入文件系统、数据库。还可以直接使用内置的机器学习算法、图形处理算法来处理数据,数据输入/输出示意图如图1-5所示。


c5d9f7fceb23c5c5840e418950c3f17d7064ab9b

Spark Streaming提供一种名为离散流(DStream)的高级抽象连续数据流。DStream直接支持Kafka、Flume的数据源创建,或者通过高级操作其他DStream创建,一个DStream是一个序列化的RDD。
关于Spark Streaming更具体的内容和案例会在第7章详细介绍。
1.2.3 Spark MLlib和ML
MLlib是Spark对常用的机器学习算法的实现库,同时包括相关的测试和数据生成器。MLlib目前支持4种常见的机器学习问题:二元分类、回归、聚类和协同过滤,以及一个底层的梯度下降优化基础算法。
MLlib基于RDD,天生就可以与Spark SQL、GraphX、Spark Streaming无缝集成,MLlib是MLBase的一部分,MLBase通过边界定义,力图将MLBase打造成一个机器学习平台,让机器学习开发的门槛更低,让一些并不了解机器学习的用户也能方便地使用MLBase这个工具来处理自己的数据。
MLlib支持将本地向量和矩阵存储在单个机器中,也包括有一个或更多的RDD支持的分布式矩阵。在目前的实现中,本地向量和矩阵都是为公共接口服务的简单数据模式,MLlib使用了线性代数包Breeze。在监督学习中使用到的样本在MLlib中成为标记点。
Spark MLlib架构由底层基础、算法库和应用程序三部分构成。底层基础包括Spark的运行库、进行线性代数相关技术的矩阵库和向量库。算法库包括Spark MLlib实现的具体机器学习算法,以及为这些算法提供的各类评估方法;主要实现算法包括建立在广义线性回归模型的分类和回归,以及协同过滤、聚类和决策树。在最新的Spark 1.5.0版本中还新增了基于前馈神经网络的分类器算法MultilayerPerceptronClassif?ier(MLPC),频繁项挖掘算法Pref?ixSpan、AssociationRules,实现Kolmogorov-Smirnov检验等等算法,随着版本的演进,算法库也会越来越强大。应用程序包括测试数据的生成以及外部数据的加载等功能。
Spark的ML库基于DataFrame提供高性能API,帮助用户创建和优化实用的机器学习流水线(pipeline),包括特征转换独有的Pipelines API。相比较MLlib,变化主要体现在:
1)从机器学习的Library开始转向构建一个机器学习工作流的系统,ML把整个机器学习的过程抽象成Pipeline,一个Pipeline是由多个Stage组成,每个Stage是Transformer或者Estimator。
2)ML框架下所有的数据源都是基于DataFrame,所有模型也尽量都基于Spark的数据类型表示,ML的API操作也从RDD向DataFrame全面转变。
关于MLlib和ML库更具体的内容和案例会在第8章详细介绍。
1.2.4 GraphX
从社交网络到语言建模,图数据规模和重要性的不断增长,推动了数不清的新型并行图系统(例如,Giraph和GraphLab)的发展。通过限制可以表达的计算类型和引入新的技术来分割和分发图,这些系统可以以高于普通的数据并行系统几个数量级的速度执行复杂的图算法,如图1-7所示。


7f6979a0985c80f197bc3641ed14e1e1a1c90a4a

GraphX是用于图和并行图计算的新Spark API。从上层来看,GraphX通过引入弹性分布式属性图(resilient distributed property graph)扩展了Spark RDD。这种图是一种伪图,图中的每个边和节点都有对应的属性。
为了支持图计算,GraphX给出了一系列基础的操作(例如,subgraph、joinVertices、和MapReduceTriplets)以及基于Pregel API的优化变体。除此之外,GraphX还包含了一个不断扩展的图算法和构建器集合,以便简化图分析的任务。
关于GraphX更具体的内容和案例会在第9章中详细介绍。
1.2.5 SparkR
SparkR是AMPLab发布的一个R开发包,为Apache Spark提供了轻量的前端。SparkR提供了Spark中弹性分布式数据集(RDD)的API,用户可以在集群上通过R shell交互性地运行Job。例如,我们可以在HDFS上读取或写入文件,也可以使用lapply函数进行方法调用,定义对应每一个RDD元素的运算。
Spark具有快速(fast)、可扩展(scalable)、交互(interactive)的特点,R具有统计(statistics)、绘图(plots)的优势,R和Spark的有效结合,解决了R语言中无法级联扩展的难题,也极大地丰富了Spark在机器学习方面能够使用的Lib库。
除了常见的RDD函数式算子Reduce、reduceByKey、groupByKey和Collect之外,SparkR也支持利用lapplyWithPartition对每个RDD的分区进行操作。SparkR也支持常见的闭包(closure)功能:用户定义的函数中所引用到的变量会自动被发送到集群中的其他的机器上。
SparkR的工作原理如图1-8所示,首先加载R方法包和rJava包,然后通过SparkR初始化SparkContext。


effa493a815d562099d882141af24ab552cf555c

关于SparkR处理数据挖掘更具体的内容和案例会在第10章详细介绍。

相关文章
|
26天前
|
分布式计算 数据处理 Apache
Spark和Flink的区别是什么?如何选择?都应用在哪些行业?
【10月更文挑战第10天】Spark和Flink的区别是什么?如何选择?都应用在哪些行业?
127 1
|
6月前
|
机器学习/深度学习 SQL 分布式计算
Spark核心原理与应用场景解析:面试经验与必备知识点解析
本文深入探讨Spark核心原理(RDD、DAG、内存计算、容错机制)和生态系统(Spark SQL、MLlib、Streaming),并分析其在大规模数据处理、机器学习及实时流处理中的应用。通过代码示例展示DataFrame操作,帮助读者准备面试,同时强调结合个人经验、行业趋势和技术发展以展现全面的技术实力。
514 0
|
6月前
|
机器学习/深度学习 SQL 分布式计算
Apache Spark 的基本概念和在大数据分析中的应用
介绍 Apache Spark 的基本概念和在大数据分析中的应用
251 0
|
6月前
|
机器学习/深度学习 SQL 分布式计算
介绍 Apache Spark 的基本概念和在大数据分析中的应用。
介绍 Apache Spark 的基本概念和在大数据分析中的应用。
|
SQL 分布式计算 Java
Spark入门指南:从基础概念到实践应用全解析
在这个数据驱动的时代,信息的处理和分析变得越来越重要。而在众多的大数据处理框架中, Apache Spark 以其独特的优势脱颖而出。
139 0
|
分布式计算 安全 Java
SPARK 应用如何快速应对 LOG4J 的系列安全漏洞
SPARK 应用如何快速应对 LOG4J 的系列安全漏洞
|
3月前
|
分布式计算 大数据 数据处理
Apache Spark的应用与优势:解锁大数据处理的无限潜能
【8月更文挑战第23天】Apache Spark以其卓越的性能、易用性、通用性、弹性与可扩展性以及丰富的生态系统,在大数据处理领域展现出了强大的竞争力和广泛的应用前景。随着大数据技术的不断发展和普及,Spark必将成为企业实现数字化转型和业务创新的重要工具。未来,我们有理由相信,Spark将继续引领大数据处理技术的发展潮流,为企业创造更大的价值。
|
3月前
|
分布式计算 资源调度 测试技术
“Spark Streaming异常处理秘籍:揭秘如何驯服实时数据流的猛兽,守护你的应用稳如泰山,不容错过!”
【8月更文挑战第7天】Spark Streaming 是 Apache Spark 中的关键组件,用于实时数据流处理。部署时可能遭遇数据问题、资源限制或逻辑错误等异常。合理处理这些异常对于保持应用稳定性至关重要。基础在于理解其异常处理机制,通过 DSC 将数据流切分为 RDD。对于数据异常,可采用 try-catch 结构捕获并处理;资源层面异常需优化 Spark 配置,如调整内存分配;逻辑异常则需加强单元测试及集成测试。结合监控工具,可全面提升应用的健壮性和可靠性。
76 3
|
4月前
|
分布式计算 大数据 Spark
Spark大数据处理:技术、应用与性能优化(全)PDF书籍推荐分享
《Spark大数据处理:技术、应用与性能优化》深入浅出介绍Spark核心,涵盖部署、实战与性能调优,适合初学者。作者基于微软和IBM经验,解析Spark工作机制,探讨BDAS生态,提供实践案例,助力快速掌握。书中亦讨论性能优化策略。[PDF下载链接](https://zhangfeidezhu.com/?p=347)。![Spark Web UI](https://img-blog.csdnimg.cn/direct/16aaadbb4e13410f8cb2727c3786cc9e.png#pic_center)
147 1
Spark大数据处理:技术、应用与性能优化(全)PDF书籍推荐分享
|
3月前
|
分布式计算 Hadoop 大数据
大数据处理框架在零售业的应用:Apache Hadoop与Apache Spark
【8月更文挑战第20天】Apache Hadoop和Apache Spark为处理海量零售户数据提供了强大的支持
61 0

相关实验场景

更多
下一篇
无影云桌面