ES节点角色深层解读,及高可用集群架构角色设计

本文涉及的产品
网络型负载均衡 NLB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: ES节点角色深层解读,及高可用集群架构角色设计

1、角色的重要性

角色是ES节点的重要属性,属于Elasticsearch的重要基础概念。


在高可用系统架构中,节点角色发挥着至关重要的作用。如果前期没有对业务系统和技术架构做足准备,没有充分考虑后期的扩展问题,势必会为将来的性能优化留下潜在问题。


ES中存在两个模式:“开发模式”和“生产模式”。

  • 开发模式存在的意义是为了降低ES的上手难度,在开发模式下不会触发启动检查,避免了刚考试学习ES在一些基础环境问题上死磕
  • 生产模式:生产模式存在的意义是尽可能的避免开发者因为对ES体系掌握不全面从而造成在项目初期对业务系统和性能评估的判断失误,从而给项目系统后期在系统架构上没有充分考虑性能扩展和数据结构有优化实践,为后期的性能优化带来阻碍,也为业务系统埋下了隐患。


2、高可用(HA)集群架构设计应遵循以下原则

  • 高可用原则
  • 职责单一原则
  • 易扩展原则
  • 避免资源浪费


3、节点角色划分

3.1 主节点(active master node

1 主节点 ≠ master节点

集群中只允许有一个活跃的主节点(下面简称主节点),我们称之为 active master 节点。一般为了避免主节点宕机造成集群无主,所以需要配置候选节点以便在主节点宕机时选举出新的主节点。


通常在口语中所说的主节点(或者master节点)指的都是active master节点,而不是严格意义上的配置了master角色的节点,换句话说,配置了master的节点应该叫做候选节点,其不一定是主节点,只有在master选举中胜出的节点,才是主节点,即 active master节点。


2 主节点必须遵循以下分配原则:

  • 避免重负载任务:主节点负责轻量级集群范围的操作,例如创建或删除索引、跟踪哪些节点是集群的一部分以及决定将哪些分片分配给哪些节点。拥有一个稳定的主节点对于集群健康很重要。当选的主节点拥有履行其职责所需的资源,这对于集群的健康非常重要。如果所选的主节点承载了其他任务,比如数据的增删改查等资源密集型人物,会对集群的稳定运行造成较大影响。避免主节点负载过重的最可靠方法是把所有配置了master角色的节点配置为专用主节点(或者称之为专用候选节点),使它们能够专注于管理集群。
  • 负载均衡器:专用master节点仍将充当协调节点,也就是集群中的负载均衡器,将请求从客户端路由到集群中的其他节点,但是不要以负载均衡器的目的而设置候选节点。另外负载均衡节点
  • 任何不是 voting-only的 master-eligible节点都可以被选举为 active master。
  • 主节点必须有一个 path.data目录,其内容在重启后仍然存在,就像数据节点一样,因为这是存储集群元数据的地方。集群元数据描述了如何读取存储在数据节点上的数据,因此如果丢失,则无法读取存储在数据节点上的数据。
  • 高可用性 (HA) 集群需要至少三个候选节点,其中至少两个不是仅投票节点。这样即使其中一个节点发生故障,也可以保证剩下的节点能够选举出一个主节点。


3.2 候选节点(master-eligible nodes)★

候选节点即:master-eligible node,口语中经常也称之为 master node ,严格来说,用中文来解释,应该叫做 候选节点(中文口语中通常也叫 master节点)。默认情况下,候选节点默认也是有效的投票节点,即:配置了master角色的节点,默认具备选举权和被选举权,可以参与选举,也可以为其他节点投票。


活跃的主节点一定是配置了master角色的节点,即一定是候选节点,但是候选节点不一定是主节点,一个集群中只可能有一个主节点,而可以同时存在多个候选节点,候选节点的作用主要在于当主节点宕机或发生故障脱离集群时,参与选举成为新的主节点,从而避免集群无主。


任何不是仅投票节点的主合格节点都可以通过主选举过程选举成为主节点**。**


3.3 专用主节点(dedicated master-eligible node)

专用候选节点(专用主节点)一般指仅配置了master角色的节点,其设计初衷为尽可能的让主节点职责单一,避免重负载任务给集群管理带来压力。


1 配置

node.roles: [ master ]


3.4 仅投票节点(voting_only node)

1 什么是仅投票节点

仅投票节点即:仅具备选举权可以为其他候选节点投票,而没有被选举权无法参与竞选的节点。


2 仅投票节点存在的意义

仅投票节点存在的意义就是为了降低资源浪费,注意是降低而无法做到完全避免。因为高可用系统在很多层面都需要以空间换时间,在很多情况下需要我们去权衡利弊,做出最佳选择。


为了避免让主节点执行重负载任务,遵循职责单一原则,我们一般不为其分配 data 角色,从而避免让主节点执行数据的增删改查这种重负载任务。


但是这无形中造成很大的资源浪费,尤其是小规模集群,本身服务器资源就不多,节点就少。以一个五节点的集群为例,如果我们为了遵循职责单一法则,让其中3个master节点都作为专用候选节点(仅配置master角色),那么真正执行增删改查的节点就只有两个了,


一个很好的办法就是“二加一部署”,即两个专用主节点 一个仅投票节点

节点 角色 是否主节点 选举权 被选举权 备注
node-1 master 活跃的主节点,同时也是一个负载均衡器
node-2 master 候选节点,主要作用是当 node-1 故障时替代node-1成为主节点,次要作用是充当负载均衡器
node-3 master、voting_only、data 不可能 X 虽然配置了master角色,但是只能投票。其永远不可能成为主节点,因此可为其分配data角色,避免了node-3空置,降低了资源浪费
node-4 data 不可能 无效 X 主要承担数据的读写任务,不具备有效的选举权和被选举权
node-5 data 不可能 无效 X 主要承担数据的读写任务,不具备有效的选举权和被选举权


仅投票节点没有被选举权只有选举权,也就是仅投票节点永远无法成为主节点,这样的话我们就可以为其分配data角色让其承担数据负载,这样技能保证选举出的新的主节点是一个专用主节点,又降低的资源浪费。


3 配置仅投票节点

一般情况下,voting_only 和 master 角色是一起配置的,单独配置 voting_only 角色是没有意义的。

配置master角色的节点拥有被选举权选举权,而voting_only 的作用就是阉割掉候选节点的被选举权,让其只能投票,而不能参与选举。所以如果没有master角色,配置voting_only也是没有意义的。

node.roles: [ data, master, voting_only ]


3.5 数据节点(data nodes)

数据节点保存包含已编入索引的文档的分片。数据节点处理数据相关操作,如 CRUD、搜索和聚合。这些操作是 I/O 密集型、内存密集型和 CPU 密集型的。监控这些资源并在它们过载时添加更多数据节点非常重要。


配置数据节点:

node.roles: [ data, xxx ]


3.6 预处理节点(ingest nodes)

预处理节点有点类似于logstash的消息管道,所以也叫ingest pipeline,常用语一些数据写入之前的预处理操作,比如去除空格、split等操作,常和update_by_query、reindex等一起考

配置方法

node.roles: [ ingest, xxx ]


3.7 远程节点(remote_cluster_client client)

具有 remote_cluster_client角色的节点,使其有资格充当远程客户端

当需要通过远程访问节点时,该角色必须配置,比如通过publish_host配置的地址访问服务节点时,该角色必须启用

配置方法

node.roles: [ remote_cluster_client, xxx ]


4 小规模集群推荐高可用配置

专用主节点存在的意义和集群规模是正相关的,也就是说,集群规模越大,配置专用主节点的意义也就越大

对于 3.4.2 中提到的五节点的集群,两个专用主节点的设计,对于当前集群规模来说,仍然是存在很大的浪费的


举个栗子

我们可以把主节点想象成一个班级的班长,五个节点分别代表五个学生,这其中包含班长。


班级就是我们的集群,现在班级需要打扫卫生(重负载任务),班长的职责主要就是指挥其他学生打扫卫生,但是当班级里人数特别少的时候,指挥其他学生这个工作对于班长的负担并不大,因为学生人数本来就很少,这个时候缺的是打扫卫生的人,此时让班长同时也去打扫卫生是更加合理的。


但是如果班级学生很多,比如有几十个上百个甚至更多,此时班长就应该把他的主要职责放在“指挥”这件事上面,自己同时兼顾打扫卫生不仅不会对整个集群负载带来多少好处,反而会大大影响自己指挥整个班级。所以此时他应该这一件事做好,也就是专用主节点了。


节点 角色 是否主节点 选举权 被选举权
node-1 master、data
node-2 master 、data
node-3 master 、data
node-4 data 不可能 无效 X
node-5 data 不可能 无效 X


小规模集群,尤其是节点个数为个位数的集群,分配专用主节点是得不偿失的!专用主节点带来的价值是远远无法弥补其浪费的节点所带来的损失的


相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
24天前
|
存储 SQL 关系型数据库
Mysql高可用架构方案
本文阐述了Mysql高可用架构方案,介绍了 主从模式,MHA模式,MMM模式,MGR模式 方案的实现方式,没有哪个方案是完美的,开发人员在选择何种方案应用到项目中也没有标准答案,合适的才是最好的。
105 3
Mysql高可用架构方案
|
22天前
|
人工智能 云计算 网络架构
阿里云引领智算集群网络架构的新一轮变革
11月8日~10日在江苏张家港召开的CCF ChinaNet(即中国网络大会)上,众多院士、教授和业界技术领袖齐聚一堂,畅谈网络未来的发展方向,聚焦智算集群网络的创新变革。
阿里云引领智算集群网络架构的新一轮变革
|
23天前
|
负载均衡 Dubbo 算法
集群容错架构设计
集群容错架构设计
27 1
集群容错架构设计
|
22天前
|
人工智能 运维 网络架构
阿里云引领智算集群网络架构的新一轮变革
11月8日至10日,CCF ChinaNet(中国网络大会)在江苏张家港召开,众多院士、教授和技术领袖共聚一堂,探讨网络未来发展方向。阿里云研发副总裁蔡德忠发表主题演讲,展望智算技术发展趋势,提出智算网络架构变革的新思路,发布高通量以太网协议和ENode+超节点系统规划,引起广泛关注。阿里云HPN7.0引领智算以太网生态蓬勃发展,成为业界标杆。未来,X10规模的智算集群将面临新的挑战,Ethernet将成为主流方案,推动Scale up与Scale out的融合架构,提升整体系统性能。
|
19天前
|
存储 缓存 NoSQL
【赵渝强老师】Memcached集群的架构
Memcached 是一个高性能的分布式内存对象缓存系统,通过在内存中维护一个巨大的 Hash 表来存储各种格式的数据,如图像、视频、文件及数据库检索结果等。它主要用于减轻数据库压力,提高网站系统的性能。Memcached 不支持数据持久化,因此仅作为缓存技术使用。其数据分布式存储由客户端应用程序实现,而非服务端。
【赵渝强老师】Memcached集群的架构
|
1月前
|
Kubernetes 关系型数据库 MySQL
Kubernetes入门:搭建高可用微服务架构
【10月更文挑战第25天】在快速发展的云计算时代,微服务架构因其灵活性和可扩展性备受青睐。本文通过一个案例分析,展示了如何使用Kubernetes将传统Java Web应用迁移到Kubernetes平台并改造成微服务架构。通过定义Kubernetes服务、创建MySQL的Deployment/RC、改造Web应用以及部署Web应用,最终实现了高可用的微服务架构。Kubernetes不仅提供了服务发现和负载均衡的能力,还通过各种资源管理工具,提升了系统的可扩展性和容错性。
84 3
|
19天前
|
调度 Docker 容器
【赵渝强老师】Docker Swarm集群的体系架构
Docker Swarm自1.12.0版本起集成至Docker引擎,无需单独安装。它内置服务发现功能,支持跨多服务器或宿主机创建容器,形成集群提供服务。相比之下,Docker Compose仅限于单个宿主机。Docker Swarm采用主从架构,Swarm Manager负责管理和调度集群中的容器资源,用户通过其接口发送指令,Swarm Node根据指令创建容器运行应用。
|
2月前
|
负载均衡 安全 调度
Docker Swarm集群架构
【10月更文挑战第8天】
64 1
|
2月前
|
消息中间件 分布式计算 Kafka
大数据-98 Spark 集群 Spark Streaming 基础概述 架构概念 执行流程 优缺点
大数据-98 Spark 集群 Spark Streaming 基础概述 架构概念 执行流程 优缺点
41 0
|
2月前
|
SQL 存储 分布式计算
大数据-93 Spark 集群 Spark SQL 概述 基本概念 SparkSQL对比 架构 抽象
大数据-93 Spark 集群 Spark SQL 概述 基本概念 SparkSQL对比 架构 抽象
43 0