力扣LeetCode初级算法(旋转图像)

简介: 力扣LeetCode初级算法(旋转图像)

初级算法 - LeetBook - 力扣(LeetCode)全球极客挚爱的技术成长平台

给定一个 n × n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。

你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。

示例 1:

image.png

编辑

输入: matrix = [[1,2,3],[4,5,6],[7,8,9]]
输出: [[7,4,1],[8,5,2],[9,6,3]]

示例 2:

image.png

编辑

输入:matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]

输出:[[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]

提示:

n == matrix.length == matrix[i].length

1 <= n <= 20

-1000 <= matrix[i][j] <= 1000

思路一:这个题要求不能创建新的数组而是在原本的数组上进行交换,如果可以创建数组

输入:matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]

输出:[[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]

image.png

编辑

我们会发现他倒着将每一行的第一个元素组在第一行中,第二行第三个一次排序就好。如果我们不能创建数组只能观察他们之间的关系去交换数组元素的值。

image.png

编辑

我们需要去观察这个数组的变化,这个题就是找规律的题,他实则是将数组每一行从最上面与最远处没有交换过的行先交换 然后再进行对角交换

image.png

编辑

这样我们就可以得到最好的结果了,这里的关键是怎么去交换对角的内容,这里中间我画了一个横线,代表左半边三角形是不需要操作的,需要操作的右边上半个三角形,它们的纵坐标起始值是横坐标加一然后遍历到列数的最大值就好哦了,这样一行行交换就好了

class Solution {
    public void rotate(int[][] matrix) {
        int deep=matrix.length-1;
        int top=0;
        //行交换
        while(top<deep) {
            for (int i = 0; i < matrix[0].length; i++) {
                int temp=matrix[top][i];
                matrix[top][i]=matrix[deep][i];
                matrix[deep][i]=temp;
            }
            top++;
            deep--;
        }
        //对角线交换
        for (int i = 0; i <  matrix[0].length-1; i++) {
            for (int j = i+1; j < matrix[0].length; j++) {
                int temp=matrix[i][j];
                matrix[i][j]=matrix[j][i];
                matrix[j][i]=temp;
            }
        }
    }
}


相关文章
|
4月前
|
算法 数据安全/隐私保护 开发者
马特赛特旋转算法:Python的随机模块背后的力量
马特赛特旋转算法是Python `random`模块的核心,由松本真和西村拓士于1997年提出。它基于线性反馈移位寄存器,具有超长周期和高维均匀性,适用于模拟、密码学等领域。Python中通过设置种子值初始化状态数组,经状态更新和输出提取生成随机数,代码简单高效。
150 63
|
5月前
|
程序员 C语言
【C语言】LeetCode(力扣)上经典题目
【C语言】LeetCode(力扣)上经典题目
|
5月前
|
索引
力扣(LeetCode)数据结构练习题(3)------链表
力扣(LeetCode)数据结构练习题(3)------链表
131 0
|
5月前
力扣(LeetCode)数据结构练习题(2)
力扣(LeetCode)数据结构练习题(2)
42 0
|
5月前
|
存储
力扣(LeetCode)数据结构练习题
力扣(LeetCode)数据结构练习题
79 0
|
11天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
83 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
2天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
|
2天前
|
算法 数据安全/隐私保护
基于Big-Bang-Big-Crunch(BBBC)算法的目标函数最小值计算matlab仿真
该程序基于Big-Bang-Big-Crunch (BBBC)算法,在MATLAB2022A中实现目标函数最小值的计算与仿真。通过模拟宇宙大爆炸和大收缩过程,算法在解空间中搜索最优解。程序初始化随机解集,经过扩张和收缩阶段逐步逼近全局最优解,并记录每次迭代的最佳适应度。最终输出最佳解及其对应的目标函数最小值,并绘制收敛曲线展示优化过程。 核心代码实现了主循环、粒子位置更新、适应度评估及最优解更新等功能。程序运行后无水印,提供清晰的结果展示。
|
3天前
|
算法 数据挖掘 数据安全/隐私保护
基于CS模型和CV模型的多目标协同滤波跟踪算法matlab仿真
本项目基于CS模型和CV模型的多目标协同滤波跟踪算法,旨在提高复杂场景下多个移动目标的跟踪精度和鲁棒性。通过融合目标间的关系和数据关联性,优化跟踪结果。程序在MATLAB2022A上运行,展示了真实轨迹与滤波轨迹的对比、位置及速度误差均值和均方误差等关键指标。核心代码包括对目标轨迹、速度及误差的详细绘图分析,验证了算法的有效性。该算法结合CS模型的初步聚类和CV模型的投票机制,增强了目标状态估计的准确性,尤其适用于遮挡、重叠和快速运动等复杂场景。
|
1天前
|
算法 数据安全/隐私保护
基于Adaboost的数据分类算法matlab仿真
本程序基于Adaboost算法进行数据分类的Matlab仿真,对比线性与非线性分类效果。使用MATLAB2022A版本运行,展示完整无水印结果。AdaBoost通过迭代训练弱分类器并赋予错分样本更高权重,最终组合成强分类器,显著提升预测准确率。随着弱分类器数量增加,训练误差逐渐减小。核心代码实现详细,适合研究和教学使用。