【C语言】深度剖析数据在内存中的存储(1)

简介: 【C语言】深度剖析数据在内存中的存储(1)

数据类型的介绍

C语言中有哪些数据类型:

2020062310470442.png

数据类型的意义:

  1. 数据类型决定了数据在内存中开辟空间的大小。
  2. 数据类型决定了编译器看待数据的视角。

整形在内存中的存储

我们知道,一个变量的创建是要在内存中开辟空间的,而且所开辟空间的大小是根据不同的类型决定的,那么,数据在所开辟内存中到底是如何存储的呢?接下来我们探讨这个问题。

1、原码、反码、补码

计算机中的整数有三种2进制表示方法,即原码、反码和补码。

三种表示方法均由符号位和数值位两部分组成,符号位都是用0表示“正”,用1表示“负”。

对于正数来说:原码 = 反码 = 补码。

而对于负数来说:原码符号位不变,其他位按位取反得到反码,补码加一得到补码。

2020062310470442.png

而计算机内部存放的就是数据的补码,原因如下:

在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统 一处理;


同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。

注:为什么说补码与原码相互转换运算过程是相同的呢,因为对于一个负数来说,原码取反加一可以得到补码,同样补码取反加一也可以得到原码,二者转换的逻辑是相同的,所以不需要额外的硬件电路。

2020062310470442.png

我们可以看到,在计算机内部存储的确实是数据的补码,但是我们也发现,数据在内存中好像是倒着存储的,这是为什么呢?其实这是因为大小端字节序,接下来我为大家介绍。

2、大小端字节序

什么是大端小端:

大端小端其实指的是数据以字节为单位在内存中存储的顺序。


大端存储模式:以字节为单位,把数据的低权值位放在放在高地址处,把数据的高权值位放在低地址处。


小端存储模式:以字节为单位,把数据的低权值位放在放在低地址处,把数据的高权值位放在高地址处。

2020062310470442.png

为什么会有大端小端:

为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元 都对应着一个字节,一个字节为8 bit。但是在C语言中除了8 bit的char之外,还有16 bit的short 型,32 bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32 位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。



例如:一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为 高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高 地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则 为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式 还是小端模式。

练习:百度2015年系统工程师笔试题

请简述大端字节序和小端字节序的概念,设计一个小程序来判断当前机器的字节序。(10分)

对于大端字节序和小端字节序的概念上面我们已经知道了,接下来就是设计一个代码来判断大小端字节序,代码实现:

2020062310470442.png

代码分析:

在check_sys函数里面,我们先将a变量的地址强制类型转换为char*,然后用char*的指针变量pa来接受,然后直接对pa解引用返回。原因如下:1的十六进制为 00 00 00 01,如果当前机器是小端存储,那么内存中存储的就是 01 00 00 00,反之则是 00 00 00 01,同时我们知道char*指针一次只能访问一个字节的变量,所以如果我们对pa解引用返回的值是1就说明当前机器是小端字节序,如果返回的是0就说明是大端字节序。

3、整形提升

什么是整形提升:

C的整型算术运算总是至少以缺省整型类型的精度来进行的。 为了获得这个精度,表达式中的字符和短整型操作数在使用之前被转换为普通整型,这种转换称为整型提升

整形提升的意义:

表达式的整型运算要在CPU的相应运算器件内执行,CPU内整型运算器(ALU)的操作数的字节长度 一般就是int的字节长度,同时也是CPU的通用寄存器的长度。



因此,即使两个char类型的相加,在CPU执行时实际上也要先转换为CPU内整型操作数的标准长度。 通用CPU(general-purpose CPU)是难以直接实现两个8比特字节直接相加运算(虽然机器指令中可能有这种字节相加指令)。



所以,表达式中各种长度可能小于int长度的整型值,都必须先转 换为int或unsigned int,然后才能送入CPU去执行运算。


整形提升的例子:

2020062310470442.png

这里的a、b、c都是字符类型,大小都达不到整形大小,所以在计算a+b时a和b会先被提升为整形,然后计算得到的结果被截断后赋给c。

整形提升是如何进行的:整形提升是按照变量的数据类型的符号位来提升的

2020062310470442.png

4、整形提升练习题

练习一:在了解了整形提升的规则之后,对于上面的例子我们就可以很好的解答了 :

2020062310470442.png

练习二:下面程序的输出结果是什么?

int main()
{
 char a = 0xb6;
 short b = 0xb600;
 int c = 0xb6000000;
 if(a==0xb6)
 printf("a");
 if(b==0xb600)
 printf("b");
 if(c==0xb6000000)
 printf("c");
 return 0;
}

2020062310470442.png

练习三:下面程序的输出结果是什么?

int main()
{
 char c = 1;
 printf("%u\n", sizeof(c));
 printf("%u\n", sizeof(+c));
 printf("%u\n", sizeof(-c));
 return 0;
}

2020062310470442.png

c只要参与表达式运算,就会发生整形提升。表达式 +c 就会发生提升,所以 sizeof(+c) 是4个字 节.;表达式 -c 也会发生整形提升,所以 sizeof(-c) 是4个字节;但是 sizeof© 就是1个字节。

练习四:下面程序的输出结果是什么?

#include<stdio.h>
int i;
int main()
{
    i--;
    if(i > sizeof(i))
    {
        printf(">\n");
    }
    else
    {
        printf("<\n");
    }
    return 0;
}

2020062310470442.png

从上面的学习中我们知道,整形提升的确是真实存在的,只是我们平时可能都没有注意到而已。同时,上面我们提到的整形提升的前提是一个数据的大小小于四个字节,但是实际中我们不仅仅会遇到小于int的数据和int的数据进行比较,我们还会遇到int和float比较,float和double比较等类似情况,这个时候就会发生算术转换,即字节数小的自动向字节数大的进行转换,比如int向float、double转换,int向long、long long转换等等,特别注意,当两个数据的大小相同时,有符号的数据会自动向无符号的数据进行转换,就比如练习四中的int向unsigned int转换。




相关文章
|
24天前
|
存储 程序员 编译器
C 语言中的数据类型转换:连接不同数据世界的桥梁
C语言中的数据类型转换是程序设计中不可或缺的一部分,它如同连接不同数据世界的桥梁,使得不同类型的变量之间能够互相传递和转换,确保了程序的灵活性与兼容性。通过强制类型转换或自动类型转换,C语言允许开发者在保证数据完整性的前提下,实现复杂的数据处理逻辑。
|
24天前
|
存储 编译器 程序员
【C语言】内存布局大揭秘 ! -《堆、栈和你从未听说过的内存角落》
在C语言中,内存布局是程序运行时非常重要的概念。内存布局直接影响程序的性能、稳定性和安全性。理解C程序的内存布局,有助于编写更高效和可靠的代码。本文将详细介绍C程序的内存布局,包括代码段、数据段、堆、栈等部分,并提供相关的示例和应用。
38 5
【C语言】内存布局大揭秘 ! -《堆、栈和你从未听说过的内存角落》
|
24天前
|
存储 缓存 算法
【C语言】内存管理函数详细讲解
在C语言编程中,内存管理是至关重要的。动态内存分配函数允许程序在运行时请求和释放内存,这对于处理不确定大小的数据结构至关重要。以下是C语言内存管理函数的详细讲解,包括每个函数的功能、标准格式、示例代码、代码解释及其输出。
52 6
|
25天前
|
存储 数据管理 C语言
C 语言中的文件操作:数据持久化的关键桥梁
C语言中的文件操作是实现数据持久化的重要手段,通过 fopen、fclose、fread、fwrite 等函数,可以实现对文件的创建、读写和关闭,构建程序与外部数据存储之间的桥梁。
|
27天前
|
传感器 人工智能 物联网
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发,以及面临的挑战和未来趋势,旨在帮助读者深入了解并掌握这些关键技术。
45 6
|
28天前
|
存储 数据建模 程序员
C 语言结构体 —— 数据封装的利器
C语言结构体是一种用户自定义的数据类型,用于将不同类型的数据组合在一起,形成一个整体。它支持数据封装,便于管理和传递复杂数据,是程序设计中的重要工具。
|
1月前
|
存储 C语言
C语言如何使用结构体和指针来操作动态分配的内存
在C语言中,通过定义结构体并使用指向该结构体的指针,可以对动态分配的内存进行操作。首先利用 `malloc` 或 `calloc` 分配内存,然后通过指针访问和修改结构体成员,最后用 `free` 释放内存,实现资源的有效管理。
120 13
|
28天前
|
大数据 C语言
C 语言动态内存分配 —— 灵活掌控内存资源
C语言动态内存分配使程序在运行时灵活管理内存资源,通过malloc、calloc、realloc和free等函数实现内存的申请与释放,提高内存使用效率,适应不同应用场景需求。
|
1月前
|
存储 编译器 数据处理
C 语言结构体与位域:高效数据组织与内存优化
C语言中的结构体与位域是实现高效数据组织和内存优化的重要工具。结构体允许将不同类型的数据组合成一个整体,而位域则进一步允许对结构体成员的位进行精细控制,以节省内存空间。两者结合使用,可在嵌入式系统等资源受限环境中发挥巨大作用。
62 11
|
28天前
|
存储 算法 程序员
C 语言指针详解 —— 内存操控的魔法棒
《C 语言指针详解》深入浅出地讲解了指针的概念、使用方法及其在内存操作中的重要作用,被誉为程序员手中的“内存操控魔法棒”。本书适合C语言初学者及希望深化理解指针机制的开发者阅读。

热门文章

最新文章