C语言经典递归题目 -- 汉诺塔问题

简介: C语言经典递归题目 -- 汉诺塔问题

题目描述

汉诺塔问题起源于一个传说

汉诺塔又被称为河内塔,传说,在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针。



印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔。



不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面。



僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔、庙宇和众生也都将同归于尽。

我们现在要研究的就是在不同情况下盘子的移动顺序和移动的次数。

画图分析

由简到繁,我们先从最简单的情况来分析:

~~只有一个盘子的时候:

只有一个盘子我们直接把它从A柱移到C柱就行,此时移动次数是1,移动顺序是 A->C

2020062310470442.png

~~有两个盘子的时候:

有两个盘子的时候我们需要先将较小的盘子移动到B柱,然后将较大的盘子移动C柱,再将B柱上的盘子移动到C柱;此时移动次数是3,移动顺序是 A->B A->C B->C

2020062310470442.png

~~有三个盘子的时候:

有三个盘子的时侯,我们把最小的盘子命名为1,中间的为2,最大的为3,那么移动顺序应该是:1号移到到C柱,2号移动到B柱,1号移动到B柱,3号移动到C柱,1号移动到A柱,2号移动到C柱,1号移动到C柱;一共移动7次,移动顺序是A->C A->B C->B A->C B->A B->C A->C

A->C A->B C->B

2020062310470442.png

A->C B->A

20200623104134875.png

B->C A->C

20200623104650275.png

思路总结

在上面的移动过程中,B柱始终起着中转的作用,我们我们可以理解为:

  • A柱:起始柱
  • B柱:中转柱
  • C柱:目标柱

同时,我们发现一个盘子时需要移动一次,两个盘子时需要移动3次,3个盘子时需要移动7次,所以总结规律:n个盘子需要移动的次数是 2n-1 次。

其次,我们可以把上面的移动过程简化为三个步骤:



把n-1个盘子通过C柱移到B柱上。

把A柱上的最后一个盘子移动到C柱上。

把n-1个盘子通过A柱移动到C柱上。


比如,上面盘子个数为三的时候,我们可以分解为:第一步:1号移到到C柱,2号移动到B柱,1号移动到B柱;第二步:3号移动到C柱;第三步:1号移动到A柱,2号移动到C柱,1号移动到C柱。

所以,n个盘子的移动顺序为:



1、把n-1个盘子通过C柱移到B柱上。

2020062310470442.png

2. 把A柱上的最后一个盘子移动到C柱上。

20200623104134875.png

3. 把n-1个盘子通过A柱移动到C柱上。

20200623104650275.png

代码实现

#include<stdio.h>
//Move函数,用来移动盘子,pos1表示起始柱,pos2表示目标柱
void Move(char pos1, char pos2)
{
  printf("%c->%c ", pos1, pos2);  //把pos1的盘子移动到pos2
}
//Hanoi函数,用来实现汉诺塔,其中n表示盘子的个数,pos1表示起始柱,pos2表示中转柱,pos3表示目标柱
void Hanoi(int n, char pos1, char pos2, char pos3)
{
  if (1 == n)  //当n==1时,直接把盘子从A柱移动到C柱
  {
    Move(pos1, pos3);  
  }
  else   //当n不等于1时,分三步走
  {
    //第一步:将n-1个盘子通过C柱移动到B柱,此时C柱时中转柱,B柱是目标柱
    Hanoi(n - 1, pos1, pos3, pos2);
    //第二步:把A柱最后一个盘子直接移动到C柱
    Move(pos1, pos3);
    //第三步:将n-1个盘子通过A柱移动到C柱,此时B柱是起始柱,A柱是中转柱,C柱是目标柱
    Hanoi(n - 1, pos2, pos1, pos3);
  }
}
int main()
{
  //定义一个变量来表示盘子的个数
  int n = 0;   
  //定义三个字符变量来表示三根柱子
  char pos1 = 'A';
  char pos2 = 'B';
  char pos3 = 'C';
  //调用hanoi函数
  Hanoi(1, pos1, pos2, pos3);  //n为1
  printf("\n");
  Hanoi(2, pos1, pos2, pos3);  //n为2
  printf("\n");
  Hanoi(3, pos1, pos2, pos3);  //n为3
  printf("\n");
  Hanoi(4, pos1, pos2, pos3);  //n为4
  printf("\n");
  return 0;
}

2020062310470442.png

总结

知道了汉诺塔的逻辑后,我们重新回到这个问题,我们发现,要把64片金片全部挪完需要挪动 264-1 次,假设这个僧侣一秒钟移动一次,那么一共要挪 (264-1) / 3600 / 24 / 365 = 584,942,417,355(年),那时候地球已经毁灭也不是没有可能,哈哈。


相关文章
|
2月前
|
机器学习/深度学习 C语言
【c语言】一篇文章搞懂函数递归
本文详细介绍了函数递归的概念、思想及其限制条件,并通过求阶乘、打印整数每一位和求斐波那契数等实例,展示了递归的应用。递归的核心在于将大问题分解为小问题,但需注意递归可能导致效率低下和栈溢出的问题。文章最后总结了递归的优缺点,提醒读者在实际编程中合理使用递归。
76 7
|
2月前
|
程序员 C语言
【C语言】LeetCode(力扣)上经典题目
【C语言】LeetCode(力扣)上经典题目
|
2月前
|
C语言
c语言回顾-函数递归(上)
c语言回顾-函数递归(上)
47 2
|
2月前
|
C语言
c语言回顾-函数递归(下)
c语言回顾-函数递归(下)
45 0
|
4月前
|
机器学习/深度学习 C语言
【C语言篇】递归详细介绍(基础概念习题及汉诺塔等进阶问题)
要保持最小的步数,每一次汉诺塔问题(无论是最初还是递归过程中的),如果此时初始柱盘子数为偶数,我们第一步是把最上面的盘子移动到中转柱,如果为奇数,我们第一步则是将其移动到目标柱。
105 0
【C语言篇】递归详细介绍(基础概念习题及汉诺塔等进阶问题)
|
4月前
|
存储 编译器 C语言
【C语言】指针练习题目
【C语言】指针练习题目
|
4月前
|
C语言
C语言中的递归
C语言中的递归
|
4月前
|
算法 编译器 C语言
【C语言】递归
【C语言】递归
27 0
|
7月前
|
C语言
C语言递归问题【青蛙跳台阶】和【汉诺塔】
C语言递归问题【青蛙跳台阶】和【汉诺塔】
|
C语言
【C语言】用函数递归的方法解决汉诺塔问题
【C语言】用函数递归的方法解决汉诺塔问题
84 0