工作用Go: 异步任务怎么写2 | 简单 Go 并发: 任务编排

简介: 工作用Go: 异步任务怎么写2 | 简单 Go 并发: 任务编排

go01.jpeg

本文为 工作用Go: 异步任务怎么写 系列的2


上面的例子, 常见有 3 种解决方案:


  • 方案1: 等子协程执行完
funcTestTask(t*testing.T) {
gotask()
time.Sleep(time.Second) // 等待子协程执行完log.Print("req done")
}
functask() {
// 模拟耗时任务time.Sleep(time.Second)
log.Print("task done")
}


  • 方案2: 使用 WaitGroup
funcTestTask(t*testing.T) {
varwgsync.WaitGroupwg.Add(1)
gofunc() {
task()
wg.Done()
 }()
wg.Wait()
log.Print("req done")
}
functask() {
// 模拟耗时任务time.Sleep(time.Second)
log.Print("task done")
}

WaitGroup 其实很好理解, 就是同时等待一组任务完成, 它分为 3 步: 1. Add: 总共有多少任务; 2. Done(): 表示任务执行完; 3. Wait(): 等待所有任务完成


  • 方案3: 使用 Go 的并发语言 chan
funcTestTask(t*testing.T) {
ch :=make(chanstruct{}) // 初始化 changofunc() {
task()
ch<-struct{}{} // 发送到 chan }()
<-ch// 从 chan 获取log.Print("req done")
}
functask() {
// 模拟耗时任务time.Sleep(time.Second)
log.Print("task done")
}


Go基础知识: 通过 chan T 就可以申明 T 类型的 chan, 供协程间进行通信; struct{} 是 Go 中 0 memory use(0内存占用)类型, 适合上面使用 chan 进行 控制 而不需要 数据 进行通信的情况


虽然只是3个简单的 demo code, Go 提供的 2 种并发能力都有展示:

  • 传统并发原语: 大部分集中在sync包下, 上面案例2中的 sync.WaitGroup 就是其中之一
  • Go 基于 CSP 的并发编程范式: 包括 go chan select, 上面的案例3中展示了 go+chan 的基本用法


简单 Go 并发讲完了, 那任务编排又是啥? 其实, 某等程度上, 任务编排=异步, 任务需要 分工 完成时, 也就是一个任务相对于另一个任务需要 异步处理. 而任务编排, 恰恰是 Go 语言中基于 chan 进行并发编程的强项.


Go 中有一个大的方向,就是任务编排用 Channel,共享资源保护用传统并发原语。


回到最初的代码, 在实际使用中, 到底使用的是哪种方案呢? 答案是 方案1. 看看接近真实场景的代码

funcTestTrace(t*testing.T) {
for { // 服务以 daemon 的方式持续运行// 不断处理用户的请求  {
gotask()
log.Print("req done")
  }
 }
}
functask() {
// 模拟耗时任务time.Sleep(time.Second)
log.Print("task done")
}


也就是真实场景下, 主协程所在的 server 会一直常驻, 请求(request)所有的子协程不用担心还没执行完就被强制退出了.

目录
相关文章
|
5月前
|
人工智能 安全 算法
Go入门实战:并发模式的使用
本文详细探讨了Go语言的并发模式,包括Goroutine、Channel、Mutex和WaitGroup等核心概念。通过具体代码实例与详细解释,介绍了这些模式的原理及应用。同时分析了未来发展趋势与挑战,如更高效的并发控制、更好的并发安全及性能优化。Go语言凭借其优秀的并发性能,在现代编程中备受青睐。
162 33
|
4月前
|
存储 Go 开发者
Go 语言中如何处理并发错误
在 Go 语言中,并发编程中的错误处理尤为复杂。本文介绍了几种常见的并发错误处理方法,包括 panic 的作用范围、使用 channel 收集错误与结果,以及使用 errgroup 包统一管理错误和取消任务,帮助开发者编写更健壮的并发程序。
89 4
Go 语言中如何处理并发错误
|
2月前
|
数据采集 Go API
Go语言实战案例:多协程并发下载网页内容
本文是《Go语言100个实战案例 · 网络与并发篇》第6篇,讲解如何使用 Goroutine 和 Channel 实现多协程并发抓取网页内容,提升网络请求效率。通过实战掌握高并发编程技巧,构建爬虫、内容聚合器等工具,涵盖 WaitGroup、超时控制、错误处理等核心知识点。
|
2月前
|
数据采集 消息中间件 编解码
Go语言实战案例:使用 Goroutine 并发打印
本文通过简单案例讲解 Go 语言核心并发模型 Goroutine,涵盖协程启动、输出控制、主程序退出机制,并结合 sync.WaitGroup 实现并发任务同步,帮助理解 Go 并发设计思想与实际应用。
|
6月前
|
数据采集 监控 Go
用 Go 实现一个轻量级并发任务调度器(支持限速)
本文介绍了如何用 Go 实现一个轻量级的并发任务调度器,解决日常开发中批量任务处理的需求。调度器支持最大并发数控制、速率限制、失败重试及结果收集等功能。通过示例代码展示了其使用方法,并分析了核心组件设计,包括任务(Task)和调度器(Scheduler)。该工具适用于网络爬虫、批量请求等场景。文章最后总结了 Go 并发模型的优势,并提出了扩展功能的方向,如失败回调、超时控制等,欢迎读者交流改进。
208 25
|
8月前
|
存储 缓存 安全
Go 语言中的 Sync.Map 详解:并发安全的 Map 实现
`sync.Map` 是 Go 语言中用于并发安全操作的 Map 实现,适用于读多写少的场景。它通过两个底层 Map(`read` 和 `dirty`)实现读写分离,提供高效的读性能。主要方法包括 `Store`、`Load`、`Delete` 等。在大量写入时性能可能下降,需谨慎选择使用场景。
|
11月前
|
存储 负载均衡 监控
如何利用Go语言的高效性、并发支持、简洁性和跨平台性等优势,通过合理设计架构、实现负载均衡、构建容错机制、建立监控体系、优化数据存储及实施服务治理等步骤,打造稳定可靠的服务架构。
在数字化时代,构建高可靠性服务架构至关重要。本文探讨了如何利用Go语言的高效性、并发支持、简洁性和跨平台性等优势,通过合理设计架构、实现负载均衡、构建容错机制、建立监控体系、优化数据存储及实施服务治理等步骤,打造稳定可靠的服务架构。
230 1
|
11月前
|
Go 调度 开发者
探索Go语言中的并发模式:goroutine与channel
在本文中,我们将深入探讨Go语言中的核心并发特性——goroutine和channel。不同于传统的并发模型,Go语言的并发机制以其简洁性和高效性著称。本文将通过实际代码示例,展示如何利用goroutine实现轻量级的并发执行,以及如何通过channel安全地在goroutine之间传递数据。摘要部分将概述这些概念,并提示读者本文将提供哪些具体的技术洞见。
|
12月前
|
Java 大数据 Go
Go语言:高效并发的编程新星
【10月更文挑战第21】Go语言:高效并发的编程新星
344 7
|
11月前
|
并行计算 安全 Go
Go语言的并发特性
【10月更文挑战第26天】Go语言的并发特性
107 1