Android多线程编程__同步(下)

简介: 在多线程应用中,两个或两个以上的线程需要共享对同一个数据的存取。

原子性

对基本数据类型的变量的读取和赋值时原子性操作,即这些操作是不可以被中断的,要么执行完毕,要么就不执行。看一下下面的代码,如下:

x=3;    //语句1
y=x;    //语句2
x++;    //语句3

在上面3个语句中,只有语句1是原子性操作,其他两个语句都不是原子性操作。

语句2虽说很短,但他包含了两个操作,它先读取x的值,在将x的值写入工作内存。读取x的值以及将x的值写入工作内存这两个操作单拿出来都是原子性操作,但是合起来就不是原子性操作了。

语句3包含3个操作: 读取x的值,对x的值进行+1,向工作内存写入新值。

所以,当一个语句包含多个操作时,就不是原子性操作,只有简单的读取和赋值(将数字赋给某个变量)才是原子性操作。

可见性

可见性,是指线程之间的可见性,一个线程修改的状态对另一个线程是可见的。也就是一个线程修改的结果 ,另一个线程马上就可以看到。当一个共享变量被 volatie修饰时,它会保证修改的值立即被更新到主存,所以随其他线程是可见的。当有其他线程需要读取该值时,其他线程会去主存中读取新值。而普通的共享变量不能保证可见性,因为普通共享变量被修改之后,并不会立即写入主存,何时被写入主存也是不确定的。当其他线程去读取该值时,此时主存中可能还是原来的旧值,这样就无法保证可见性。

有序性

Java内存模型允许编译器和处理器对指令进行重排序,虽然重排过程不会影响到单线程执行的正确性,但是会影响到多线程并发执行的正确性这时可以通过 valatie 来保证有序性,除了 voliatie ,也可以通过 synchronized 和 Lock 来保证有序性。syncheonized 和 Lock 保证每个时刻只有一个线程执行同步代码,这相当于让线程顺序执行同步代码,从而保证了有序性。

Volatile 关键字

当一个共享变量被 volatile 修饰之后,其就具备了两个含义,一个是线程修改了变量的值时,变量的新值对其他线程是立即可见的。换句话说,就是不同线程对这个变量进行操作时具有可见性。另一个含义是禁止使用指令重排序。

看下面这个Demo

假设线程1先执行,线程2后执行

  //线程1
        boolean stop=false;
        while (!stop){
        }
        //线程2
        stop=true;

上面这段代码可以用于中断线程,但是这段代码不一定会将线程中断。虽然概率很小。

为什么说有可能无法中断线程呢? 每个线程在运行时都有私有的工作内存,因此线程1在运行时会将stop变量的值复制一份放在私有的工作内存中。当线程2更改了Stop变量的值后,线程2突然需要去做其他的操作,这时就无法将更改的Stop变量写入到主存中,这样线程1就不会知道线程2对Stop变量进行了更改,因此线程1就会一直循环下去。当Stop用volatile修饰之后,那么情况就变的不同了,当线程2进行修改时,会强制将修改的值立即写入主存,并且会导致线程1的工作内存中变量stop的缓存无效,这样线程1再次读取stop的值时就会去主存读取。

volatile不保证原子性

我们知道 volatile 保证了操作的可见性,但是是否能保证原子性呢?

class A{
    public volatile int a=0;
    public   void setA(){
        a++;
    }
}
public class  MyClass{
    public static void main(String[] args) {
        final A a=new A();
        for (int i=0;i<10;i++){
            new Thread(new Runnable() {
                @Override
                public void run() {
                    for (int i=0;i<1000;i++){
                        a.setA();
                    }
                }
            }).start();
        }
        //如果有子线程就让出资源,保证所有子线程都执行完
        while (Thread.activeCount()>2){
            Thread.yield();
        }
        System.out.println(a.a);
    }
}

这段代码每次运行,结果都不一致。因为自增不具备原子性,它包括读取变量的原始值,进行+1,写入工作内存。也就是说,自增操作的3个子操作可能会分隔开执行。假如某个时刻变量inc的值为9,线程1对变量进行自增操作,线程1先读取了变量inc的原始值,然后线程1被阻塞了。之后线程2对变量进行自增操作,线程2也去读取变量inc的原始值,然后进行加1操作,并把10写入工作内存,最后写入主存。随后线程1接着进行+1操作,因为线程1在此前已经读取了 inc 的值为9,所以不会再去主存读取最新的数值,线程1对 inc 进行+1操作后 inc 的值为10,然后将10 写入工作内存,最后写入主存。两个线程分别对 inc 进行了一次自增操作后,inc 的值只增加了1,因此自增操作不是原子性操作, volatile也无法保证对变量的操作是原子性的。

volatile保证有序性

volatile关键字能禁止指令重排序,因此 volatile 能保证有序性。volatile 关键字禁止指令重排序有两个含义:一个是当程序执行 volatile 变量的操作时,在其前面的操作已经全部执行完毕,并且结果会对后面的操作可见,在其后面的操作还没有进行,在进行指令优化时,在 volatile 变量之前的语句不能在 volatile 变量后面执行;同样,在volatile 变量之后的语句也不能在 volatile变量前面执行

正确使用volatile 关键字

synchronized关键字可防止多个线程同时执行一段代码,那么这就会很影响程序执行效率。而 volatile 关键字在某些情况下的性能要优于 synchronized 。但是要注意 volatile 关键字是无法替代 synchronized 关键字的,因为 volatile 关键字无法保证操作的原子性。通常来说,使用 volatile 必须具备以下两个条件:

  1. 对变量的写操作不会依赖于当前值
  2. 对变量没有包含在具有其他变量的不变式中。

第一个条件就是不能是自增,自减等操作,因为 volatile不保证原子性。

volatile使用场景

1.状态标识

 volatile  boolean on;
    public void setOn(){
        on=true;
    }
    public void Print(){
        while(!on){
            System.out.println("123");
        }
    }

2.双重检查模式 (DCL)  

class Singleton{
    private volatile static Singleton instance = null;
    private Singleton() {
    }
    public static Singleton getInstance() {
        if(instance==null) {
            synchronized (Singleton.class) {
                if(instance==null)
                    instance = new Singleton();
            }
        }
        return instance;
    }
}

在上面的单例模式中,为什么要用valoatile 修饰?

因为 instance=new Singleton(),并非是一个原子操作,事实上在 JVM中这句话大概做了3件事

  1. 给 instance 分配内存
  2. 调用 Singletion 的构造函数来初始化成员变量
  3. 将 instance 对象指向分配的内存空间。(执行完这步 instance 就为 非null 了)

但是JVM 的即时编译器中存在指令重排序的优化,也就是说上面的第二步和第三步顺序是不确定的,一旦2,3,顺序乱了,这时候有另一个线程调用了方法,结果虽然非null,但是未初始化,所以会直接报错。

目录
相关文章
|
2天前
|
数据采集 存储 数据处理
Python中的多线程编程及其在数据处理中的应用
本文深入探讨了Python中多线程编程的概念、原理和实现方法,并详细介绍了其在数据处理领域的应用。通过对比单线程与多线程的性能差异,展示了多线程编程在提升程序运行效率方面的显著优势。文章还提供了实际案例,帮助读者更好地理解和掌握多线程编程技术。
|
1天前
|
API Android开发 iOS开发
深入探索Android与iOS的多线程编程差异
在移动应用开发领域,多线程编程是提高应用性能和响应性的关键。本文将对比分析Android和iOS两大平台在多线程处理上的不同实现机制,探讨它们各自的优势与局限性,并通过实例展示如何在这两个平台上进行有效的多线程编程。通过深入了解这些差异,开发者可以更好地选择适合自己项目需求的技术和策略,从而优化应用的性能和用户体验。
|
6天前
|
存储 安全 Java
Java多线程编程中的并发容器:深入解析与实战应用####
在本文中,我们将探讨Java多线程编程中的一个核心话题——并发容器。不同于传统单一线程环境下的数据结构,并发容器专为多线程场景设计,确保数据访问的线程安全性和高效性。我们将从基础概念出发,逐步深入到`java.util.concurrent`包下的核心并发容器实现,如`ConcurrentHashMap`、`CopyOnWriteArrayList`以及`BlockingQueue`等,通过实例代码演示其使用方法,并分析它们背后的设计原理与适用场景。无论你是Java并发编程的初学者还是希望深化理解的开发者,本文都将为你提供有价值的见解与实践指导。 --- ####
|
15天前
|
存储 安全 Java
Java多线程编程的艺术:从基础到实践####
本文深入探讨了Java多线程编程的核心概念、应用场景及其实现方式,旨在帮助开发者理解并掌握多线程编程的基本技能。文章首先概述了多线程的重要性和常见挑战,随后详细介绍了Java中创建和管理线程的两种主要方式:继承Thread类与实现Runnable接口。通过实例代码,本文展示了如何正确启动、运行及同步线程,以及如何处理线程间的通信与协作问题。最后,文章总结了多线程编程的最佳实践,为读者在实际项目中应用多线程技术提供了宝贵的参考。 ####
|
12天前
|
监控 安全 Java
Java中的多线程编程:从入门到实践####
本文将深入浅出地探讨Java多线程编程的核心概念、应用场景及实践技巧。不同于传统的摘要形式,本文将以一个简短的代码示例作为开篇,直接展示多线程的魅力,随后再详细解析其背后的原理与实现方式,旨在帮助读者快速理解并掌握Java多线程编程的基本技能。 ```java // 简单的多线程示例:创建两个线程,分别打印不同的消息 public class SimpleMultithreading { public static void main(String[] args) { Thread thread1 = new Thread(() -> System.out.prin
|
15天前
|
Java UED
Java中的多线程编程基础与实践
【10月更文挑战第35天】在Java的世界中,多线程是提升应用性能和响应性的利器。本文将深入浅出地介绍如何在Java中创建和管理线程,以及如何利用同步机制确保数据一致性。我们将从简单的“Hello, World!”线程示例出发,逐步探索线程池的高效使用,并讨论常见的多线程问题。无论你是Java新手还是希望深化理解,这篇文章都将为你打开多线程的大门。
|
23天前
|
安全 程序员 API
|
16天前
|
安全 Java 编译器
Java多线程编程的陷阱与最佳实践####
【10月更文挑战第29天】 本文深入探讨了Java多线程编程中的常见陷阱,如竞态条件、死锁、内存一致性错误等,并通过实例分析揭示了这些陷阱的成因。同时,文章也分享了一系列最佳实践,包括使用volatile关键字、原子类、线程安全集合以及并发框架(如java.util.concurrent包下的工具类),帮助开发者有效避免多线程编程中的问题,提升应用的稳定性和性能。 ####
44 1
|
19天前
|
存储 设计模式 分布式计算
Java中的多线程编程:并发与并行的深度解析####
在当今软件开发领域,多线程编程已成为提升应用性能、响应速度及资源利用率的关键手段之一。本文将深入探讨Java平台上的多线程机制,从基础概念到高级应用,全面解析并发与并行编程的核心理念、实现方式及其在实际项目中的应用策略。不同于常规摘要的简洁概述,本文旨在通过详尽的技术剖析,为读者构建一个系统化的多线程知识框架,辅以生动实例,让抽象概念具体化,复杂问题简单化。 ####
|
21天前
|
Java 开发者
在Java多线程编程的世界里,Lock接口正逐渐成为高手们的首选,取代了传统的synchronized关键字
在Java多线程编程的世界里,Lock接口正逐渐成为高手们的首选,取代了传统的synchronized关键字
44 4
下一篇
无影云桌面