1-1 结构化数据建模流程范例 (titanic生存预测问题)
文章目录
一,准备数据
titanic数据集的目标是根据乘客信息预测他们在Titanic号撞击冰山沉没后能否生存。
结构化数据一般会使用Pandas中的DataFrame进行预处理。
import numpy as np import pandas as pd import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.keras import models,layers dftrain_raw = pd.read_csv('./data/titanic/train.csv') dftest_raw = pd.read_csv('./data/titanic/test.csv') dftrain_raw.head(10)
字段说明:
Survived:0代表死亡,1代表存活【y标签】
Pclass:乘客所持票类,有三种值(1,2,3) 【转换成onehot编码】
Name:乘客姓名 【舍去】
Sex:乘客性别 【转换成bool特征】
Age:乘客年龄(有缺失) 【数值特征,添加“年龄是否缺失”作为辅助特征】
SibSp:乘客兄弟姐妹/配偶的个数(整数值) 【数值特征】
Parch:乘客父母/孩子的个数(整数值)【数值特征】
Ticket:票号(字符串)【舍去】
Fare:乘客所持票的价格(浮点数,0-500不等) 【数值特征】
Cabin:乘客所在船舱(有缺失) 【添加“所在船舱是否缺失”作为辅助特征】
Embarked:乘客登船港口:S、C、Q(有缺失)【转换成onehot编码,四维度 S,C,Q,nan】
利用Pandas的数据可视化功能我们可以简单地进行探索性数据分析EDA(Exploratory Data Analysis)。
label分布情况
%matplotlib inline %config InlineBackend.figure_format = 'png' ax = dftrain_raw['Survived'].value_counts().plot(kind = 'bar', figsize = (12,8),fontsize=15,rot = 0) ax.set_ylabel('Counts',fontsize = 15) ax.set_xlabel('Survived',fontsize = 15) plt.show()
年龄分布情况
%matplotlib inline %config InlineBackend.figure_format = 'png' ax = dftrain_raw['Age'].plot(kind = 'hist',bins = 20,color= 'purple', figsize = (12,8),fontsize=15) ax.set_ylabel('Frequency',fontsize = 15) ax.set_xlabel('Age',fontsize = 15) plt.show()
年龄和label的相关性
%matplotlib inline %config InlineBackend.figure_format = 'png' ax = dftrain_raw.query('Survived == 0')['Age'].plot(kind = 'density', figsize = (12,8),fontsize=15) dftrain_raw.query('Survived == 1')['Age'].plot(kind = 'density', figsize = (12,8),fontsize=15) ax.legend(['Survived==0','Survived==1'],fontsize = 12) ax.set_ylabel('Density',fontsize = 15) ax.set_xlabel('Age',fontsize = 15) plt.show()
下面为正式的数据预处理
def preprocessing(dfdata): dfresult= pd.DataFrame() #Pclass dfPclass = pd.get_dummies(dfdata['Pclass']) dfPclass.columns = ['Pclass_' +str(x) for x in dfPclass.columns ] dfresult = pd.concat([dfresult,dfPclass],axis = 1) #Sex dfSex = pd.get_dummies(dfdata['Sex']) dfresult = pd.concat([dfresult,dfSex],axis = 1) #Age dfresult['Age'] = dfdata['Age'].fillna(0) dfresult['Age_null'] = pd.isna(dfdata['Age']).astype('int32') #SibSp,Parch,Fare dfresult['SibSp'] = dfdata['SibSp'] dfresult['Parch'] = dfdata['Parch'] dfresult['Fare'] = dfdata['Fare'] #Carbin dfresult['Cabin_null'] = pd.isna(dfdata['Cabin']).astype('int32') #Embarked dfEmbarked = pd.get_dummies(dfdata['Embarked'],dummy_na=True) dfEmbarked.columns = ['Embarked_' + str(x) for x in dfEmbarked.columns] dfresult = pd.concat([dfresult,dfEmbarked],axis = 1) return(dfresult) x_train = preprocessing(dftrain_raw) y_train = dftrain_raw['Survived'].values x_test = preprocessing(dftest_raw) y_test = dftest_raw['Survived'].values print("x_train.shape =", x_train.shape ) print("x_test.shape =", x_test.shape )
x_train.shape = (712, 15) x_test.shape = (179, 15)
二,定义模型
使用Keras接口有以下3种方式构建模型:使用Sequential按层顺序构建模型,使用函数式API构建任意结构模型,继承Model基类构建自定义模型。
此处选择使用最简单的Sequential,按层顺序模型。
tf.keras.backend.clear_session() model = models.Sequential() model.add(layers.Dense(20,activation = 'relu',input_shape=(15,))) model.add(layers.Dense(10,activation = 'relu' )) model.add(layers.Dense(1,activation = 'sigmoid' )) model.summary()
Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense (Dense) (None, 20) 320 _________________________________________________________________ dense_1 (Dense) (None, 10) 210 _________________________________________________________________ dense_2 (Dense) (None, 1) 11 ================================================================= Total params: 541 Trainable params: 541 Non-trainable params: 0 _________________________________________________________________
三,训练模型
训练模型通常有3种方法,内置fit方法,内置train_on_batch方法,以及自定义训练循环。此处我们选择最常用也最简单的内置fit方法。
# 二分类问题选择二元交叉熵损失函数 model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['AUC']) history = model.fit(x_train,y_train, batch_size= 64, epochs= 30, validation_split=0.2 #分割一部分训练数据用于验证 )
Epoch 1/30 9/9 [==============================] - 2s 62ms/step - loss: 2.8391 - auc: 0.3813 - val_loss: 2.0836 - val_auc: 0.3220 Epoch 2/30 9/9 [==============================] - 0s 9ms/step - loss: 1.8698 - auc: 0.3278 - val_loss: 1.2946 - val_auc: 0.3124 Epoch 3/30 9/9 [==============================] - 0s 10ms/step - loss: 1.0347 - auc: 0.3555 - val_loss: 0.8569 - val_auc: 0.3841 Epoch 4/30 9/9 [==============================] - 0s 10ms/step - loss: 0.7541 - auc: 0.5236 - val_loss: 0.8823 - val_auc: 0.5343 Epoch 5/30 9/9 [==============================] - 0s 10ms/step - loss: 0.7402 - auc: 0.6344 - val_loss: 0.8955 - val_auc: 0.5708 Epoch 6/30 9/9 [==============================] - 0s 12ms/step - loss: 0.7220 - auc: 0.6680 - val_loss: 0.8342 - val_auc: 0.5676 Epoch 7/30 9/9 [==============================] - 0s 9ms/step - loss: 0.6922 - auc: 0.6668 - val_loss: 0.7577 - val_auc: 0.5593 Epoch 8/30 9/9 [==============================] - 0s 14ms/step - loss: 0.6638 - auc: 0.6679 - val_loss: 0.7171 - val_auc: 0.5791 Epoch 9/30 9/9 [==============================] - 0s 12ms/step - loss: 0.6458 - auc: 0.6818 - val_loss: 0.6939 - val_auc: 0.5963 Epoch 10/30 9/9 [==============================] - 0s 15ms/step - loss: 0.6307 - auc: 0.7037 - val_loss: 0.6852 - val_auc: 0.6140 Epoch 11/30 9/9 [==============================] - 0s 10ms/step - loss: 0.6156 - auc: 0.7206 - val_loss: 0.6740 - val_auc: 0.6304 Epoch 12/30 9/9 [==============================] - 0s 11ms/step - loss: 0.6030 - auc: 0.7454 - val_loss: 0.6684 - val_auc: 0.6404 Epoch 13/30 9/9 [==============================] - 0s 10ms/step - loss: 0.5879 - auc: 0.7622 - val_loss: 0.6624 - val_auc: 0.6508 Epoch 14/30 9/9 [==============================] - 0s 12ms/step - loss: 0.5723 - auc: 0.7756 - val_loss: 0.6436 - val_auc: 0.6674 Epoch 15/30 9/9 [==============================] - 0s 13ms/step - loss: 0.5629 - auc: 0.7796 - val_loss: 0.6398 - val_auc: 0.6788 Epoch 16/30 9/9 [==============================] - 0s 15ms/step - loss: 0.5531 - auc: 0.7967 - val_loss: 0.6285 - val_auc: 0.6885 Epoch 17/30 9/9 [==============================] - 0s 16ms/step - loss: 0.5398 - auc: 0.8074 - val_loss: 0.6303 - val_auc: 0.6961 Epoch 18/30 9/9 [==============================] - 0s 11ms/step - loss: 0.5353 - auc: 0.8118 - val_loss: 0.6201 - val_auc: 0.7016 Epoch 19/30 9/9 [==============================] - 0s 14ms/step - loss: 0.5246 - auc: 0.8171 - val_loss: 0.6180 - val_auc: 0.7058 Epoch 20/30 9/9 [==============================] - 0s 11ms/step - loss: 0.5169 - auc: 0.8237 - val_loss: 0.6106 - val_auc: 0.7101 Epoch 21/30 9/9 [==============================] - 0s 14ms/step - loss: 0.5098 - auc: 0.8326 - val_loss: 0.6089 - val_auc: 0.7182 Epoch 22/30 9/9 [==============================] - 0s 12ms/step - loss: 0.5038 - auc: 0.8387 - val_loss: 0.6044 - val_auc: 0.7200 Epoch 23/30 9/9 [==============================] - 0s 13ms/step - loss: 0.4982 - auc: 0.8399 - val_loss: 0.5998 - val_auc: 0.7201 Epoch 24/30 9/9 [==============================] - 0s 11ms/step - loss: 0.4937 - auc: 0.8450 - val_loss: 0.6064 - val_auc: 0.7285 Epoch 25/30 9/9 [==============================] - 0s 11ms/step - loss: 0.4894 - auc: 0.8519 - val_loss: 0.5945 - val_auc: 0.7258 Epoch 26/30 9/9 [==============================] - 0s 19ms/step - loss: 0.4880 - auc: 0.8477 - val_loss: 0.6055 - val_auc: 0.7385 Epoch 27/30 9/9 [==============================] - 0s 11ms/step - loss: 0.4925 - auc: 0.8440 - val_loss: 0.5893 - val_auc: 0.7330 Epoch 28/30 9/9 [==============================] - 0s 21ms/step - loss: 0.4777 - auc: 0.8603 - val_loss: 0.5895 - val_auc: 0.7389 Epoch 29/30 9/9 [==============================] - 0s 12ms/step - loss: 0.4750 - auc: 0.8571 - val_loss: 0.5848 - val_auc: 0.7407 Epoch 30/30 9/9 [==============================] - 0s 10ms/step - loss: 0.4780 - auc: 0.8580 - val_loss: 0.5816 - val_auc: 0.7369
四,评估模型
我们首先评估一下模型在训练集和验证集上的效果。
%matplotlib inline %config InlineBackend.figure_format = 'svg' import matplotlib.pyplot as plt def plot_metric(history, metric): train_metrics = history.history[metric] val_metrics = history.history['val_'+metric] epochs = range(1, len(train_metrics) + 1) plt.plot(epochs, train_metrics, 'bo--') plt.plot(epochs, val_metrics, 'ro-') plt.title('Training and validation '+ metric) plt.xlabel("Epochs") plt.ylabel(metric) plt.legend(["train_"+metric, 'val_'+metric]) plt.show()
plot_metric(history,"loss")
plot_metric(history,"auc")
我们再看一下模型在测试集上的效果.
model.evaluate(x = x_test,y = y_test)
[0.5191367897907448, 0.8122605]
五,使用模型
#预测概率 model.predict(x_test[0:10]) #model(tf.constant(x_test[0:10].values,dtype = tf.float32)) #等价写法
array([[0.26501188], [0.40970832], [0.44285864], [0.78408605], [0.47650957], [0.43849158], [0.27426785], [0.5962582 ], [0.59476686], [0.17882936]], dtype=float32)
#预测类别 model.predict_classes(x_test[0:10]) # # 这个函数在2.6版本以后已经被取消了
array([[0], [0], [0], [1], [0], [0], [0], [1], [1], [0]], dtype=int32)
六,保存模型
可以使用Keras方式保存模型,也可以使用TensorFlow原生方式保存。前者仅仅适合使用Python环境恢复模型,后者则可以跨平台进行模型部署。
推荐使用后一种方式进行保存。
1,Keras方式保存
# 保存模型结构及权重 model.save('./data/keras_model.h5') del model #删除现有模型 # identical to the previous one model = models.load_model('./data/keras_model.h5') model.evaluate(x_test,y_test)
[0.5191367897907448, 0.8122605]
# 保存模型结构 json_str = model.to_json() # 恢复模型结构 model_json = models.model_from_json(json_str)
#保存模型权重 model.save_weights('./data/keras_model_weight.h5') # 恢复模型结构 model_json = models.model_from_json(json_str) model_json.compile( optimizer='adam', loss='binary_crossentropy', metrics=['AUC'] ) # 加载权重 model_json.load_weights('./data/keras_model_weight.h5') model_json.evaluate(x_test,y_test)
[0.5191367897907448, 0.8122605]
2,TensorFlow原生方式保存
# 保存权重,该方式仅仅保存权重张量 model.save_weights('./data/tf_model_weights.ckpt',save_format = "tf")
# 保存模型结构与模型参数到文件,该方式保存的模型具有跨平台性便于部署 model.save('./data/tf_model_savedmodel', save_format="tf") print('export saved model.') model_loaded = tf.keras.models.load_model('./data/tf_model_savedmodel') model_loaded.evaluate(x_test,y_test)
[0.5191365896656527, 0.8122605]