这是一张机器&深度学习代码速查表

简介: 这是一张机器&深度学习代码速查表

随着深度学习的蓬勃发展,越来越多的小伙伴们开始使用python作为主打代码,python有着种类繁多的第三方库,这里为大家从网络上收集了一些代码速查表,希望可以帮您在码代码时提速.


基础


神经网络


458e8e4686bf41a3d5e7fc8efb7ca590.png

b7d15eb29ae2422847861285a5414a9b.png


线性代数


image.png


python基础



image.png


scipy科学计算



64e3d5d51e3806a495d74812d7420422.png


spark


image.jpeg


数据保存及可视化


numpy


image.png


pandas

4fce714a44529d889e7512088b020204.png

7bddc8faf090126d4b25326fa64663cb.jpg

47c3252dbba283b38fccb3e31f675560.jpg


bokeh


image.png


画图


matplotlib

image.png


ggplot


image.jpegimage.jpeg

机器学习


sklearn


image.png

image.png


keras


image.jpeg


tensorflow


image.png

算法


数据结构


image.png


复杂度


image.png

排序算法


45f253961410cc73b50e8b04731e837e.png


相关文章
|
2月前
|
机器学习/深度学习
深度学习笔记(十二):普通卷积、深度可分离卷积、空间可分离卷积代码
本文探讨了深度可分离卷积和空间可分离卷积,通过代码示例展示了它们在降低计算复杂性和提高效率方面的优势。
248 2
深度学习笔记(十二):普通卷积、深度可分离卷积、空间可分离卷积代码
|
2月前
|
机器学习/深度学习 PyTorch 算法框架/工具
揭秘深度学习中的微调难题:如何运用弹性权重巩固(EWC)策略巧妙应对灾难性遗忘,附带实战代码详解助你轻松掌握技巧
【10月更文挑战第1天】深度学习中,模型微调虽能提升性能,但常导致“灾难性遗忘”,即模型在新任务上训练后遗忘旧知识。本文介绍弹性权重巩固(EWC)方法,通过在损失函数中加入正则项来惩罚对重要参数的更改,从而缓解此问题。提供了一个基于PyTorch的实现示例,展示如何在训练过程中引入EWC损失,适用于终身学习和在线学习等场景。
137 4
揭秘深度学习中的微调难题:如何运用弹性权重巩固(EWC)策略巧妙应对灾难性遗忘,附带实战代码详解助你轻松掌握技巧
|
1月前
|
机器学习/深度学习 算法框架/工具 Python
深度学习的奥秘与实践:从理论到代码
本文将探索深度学习的世界,揭示其背后的原理,并分享如何将这些理论应用到实际编程中。我们将一起踏上一段旅程,从神经网络的基础概念出发,逐步深入到复杂的模型训练和优化技术。你将看到,即使是初学者,也可以实现自己的深度学习项目。
|
2月前
|
机器学习/深度学习 人工智能 算法
揭开深度学习与传统机器学习的神秘面纱:从理论差异到实战代码详解两者间的选择与应用策略全面解析
【10月更文挑战第10天】本文探讨了深度学习与传统机器学习的区别,通过图像识别和语音处理等领域的应用案例,展示了深度学习在自动特征学习和处理大规模数据方面的优势。文中还提供了一个Python代码示例,使用TensorFlow构建多层感知器(MLP)并与Scikit-learn中的逻辑回归模型进行对比,进一步说明了两者的不同特点。
107 2
|
2月前
|
机器学习/深度学习 算法 算法框架/工具
深度学习在图像识别中的应用及代码示例
【9月更文挑战第32天】本文将深入探讨深度学习在图像识别领域的应用,包括其原理、技术、优势以及挑战。我们将通过一个简单的代码示例,展示如何使用深度学习技术进行图像识别。无论你是初学者还是有经验的开发者,都可以从中获得启发和帮助。让我们一起探索这个充满无限可能的领域吧!
85 8
|
3月前
|
机器学习/深度学习 算法框架/工具 Python
深度学习在图像识别中的应用及其代码实现
【9月更文挑战第24天】本文将探讨深度学习在图像识别领域的应用,并展示如何通过代码实现这一过程。我们将介绍深度学习的基本原理,以及它在图像识别中的优势和挑战。然后,我们将通过一个简单的代码示例,展示如何使用深度学习进行图像识别。最后,我们将讨论深度学习在未来图像识别中的潜力和可能的发展方向。
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的奥秘:机器如何理解世界
【9月更文挑战第10天】在人工智能领域,深度学习如同璀璨星辰,引领技术潮流。作为机器学习的重要分支,它通过构建深层神经网络模拟人脑学习过程,自动提取特征并优化性能,从而实现对复杂问题的理解和处理。本文将探讨其基本原理、工作机制及如何应用于图像识别、自然语言处理和智能推荐等领域,并展望其未来发展与挑战。
|
3月前
|
机器学习/深度学习
深度学习的魔法:如何让机器像人一样思考
在这篇文章中,我们将探索深度学习的奥秘,这是一种让机器能够模仿人类思维方式的先进技术。我们将通过一个简单的例子——教机器识别猫的图片——来揭示深度学习的工作原理。你将看到,即使是这样一个简单的任务,也需要复杂的数学模型和大量的数据。但别担心,我们会用简单的语言来解释这一切。最后,我们将讨论深度学习如何改变我们的生活,以及它面临的挑战。让我们一起踏上这段神奇的旅程吧!
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
【深度学习】深度学习的概述及应用,附带代码示例
深度学习(Deep Learning,简称DL)是机器学习领域中的一个重要分支,其目标是通过模拟人脑神经网络的工作机制,构建多层次的抽象特征表示,使机器能够自动从原始数据中提取关键信息,从而实现高精度的任务执行。深度学习通过多层神经网络结构及其训练方式,实现了从低级像素级别到高级概念级别的递进式知识层次。 深度学习的主要组件包括输入层、隐藏层和输出层。隐藏层的数量和层数决定了模型的复杂度和表达能力。在训练过程中,权重更新和梯度下降法是关键步骤,目的是最小化损失函数,提高预测精度。深度学习主要基于反向传播算法(BP Algorithm)来优化模型参数,通过正向传播、损失计算、反向传播和梯度下降等
218 8
|
4月前
|
机器学习/深度学习 算法 算法框架/工具
深度学习在图像识别中的应用及代码实现
【8月更文挑战第3天】深度学习技术在图像识别领域取得了显著的成果,通过构建深度神经网络模型,实现了对复杂图像数据的高效处理和准确识别。本文将介绍深度学习在图像识别中的原理、关键技术及应用实例,并通过代码示例展示如何利用深度学习框架进行图像识别任务的实现。