DDIA 读书分享 第二章:数据模型和查询语言(3)

简介: DDIA 读书分享 第二章:数据模型和查询语言(3)

Triple-Stores and SPARQL

Triple-Stores,可以理解为三元组存储,即用三元组存储图。

image.png                                              SPO 三元组

其含义如下:

Subject 对应图中的一个点
Object 1. 一个原子数据,如 string 或者 number。
2. 另一个 Subject。
Predicate 1. 如果 Object 是原子数据,则  <Predicate, Object> 对应点附带的 KV 对。
2. 如果 Object 是另一个 Object,则 Predicate 对应图中的边。

仍是上边例子,用 Turtle triples (一种 Triple-Stores 语法表达为

@prefix : <urn:example:>.
_:lucy     a       :Person.
_:lucy     :name   "Lucy".
_:lucy     :bornIn _:idaho.
_:idaho    a       :Location.
_:idaho    :name   "Idaho".
_:idaho    :type   "state".
_:idaho    :within _:usa.
_:usa      a       :Location
_:usa      :name   "United States"
_:usa      :type   "country".
_:usa      :within _:namerica.
_:namerica a       :Location.
_:namerica :name   "North America".
_:namerica :type   "continent".

一种更紧凑的写法:

@prefix : <urn:example:>.
_:lucy     a: Person;   :name "Lucy";          :bornIn _:idaho
_:idaho    a: Location; :name "Idaho";         :type "state";     :within _:usa.
_:usa      a: Location; :name "United States"; :type "country";   :within _:namerica.
_:namerica a :Location; :name "North America"; :type "continent".

语义网(The Semantic Web

万维网之父Tim Berners Lee于1998年提出,知识图谱前身。其目的在于对网络中的资源进行结构化,从而让计算机能够理解网络中的数据。即不是以文本、二进制流等等,而是通过某种标准结构化互相关联的数据。

语义:提供一种统一的方式对所有资源进行描述和结构化(机器可读)。

:将所有资源勾连起来。

下面是语义网技术栈(Semantic Web Stack):

image.png

                    语义网技术栈

其中 RDFResourceDescription Framework,资源描述框架)提供了一种结构化网络中数据的标准。使发布到网络中的任何资源(文字、图片、视频、网页),都能以统一的形式被计算机理解。即,不需要让资源使用方深度学习抽取资源的语义,而是靠资源提供方通过 RDF 主动提供其资源语义。

感觉有点理想主义,但互联网、开源社区都是靠这种理想主义、分享精神发展起来的!

虽然语义网没有发展起来,但是其中间数据交换格式 RDF 所定义的 SPO三元组(Subject-Predicate-Object) 却是一种很好用的数据模型,也就是上面提到的 Triple-Stores。

RDF 数据模型

上面提到的 Turtle 语言(SPO三元组)是一种简单易读的描述 RDF 数据的方式, RDF 也可以基于 XML 表示,但是要冗余难读的多(嵌套太深):

<rdf:RDF xmlns="urn:example:"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <Location rdf:nodeID="idaho"> 
  <name>Idaho</name>
  <type>state</type>
  <within>
   <Location rdf:nodeID="usa">
    <name>United States</name>
    <type>country</type>
    <within>
     <Location rdf:nodeID="namerica"> 
      <name>North America</name>
      <type>continent</type>
       </Location>
      </within>
      </Location>
    </within>
 </Location>
 <Person rdf:nodeID="lucy">
  <name>Lucy</name>
  <bornIn rdf:nodeID="idaho"/>
 </Person>
</rdf:RDF>

为了标准化和去除二义性,一些看起来比较奇怪的点是:无论 subject,predicate 还是 object 都是由 URI 定义,如

lives_in 会表示为 <http://my-company.com/namespace#lives_in>

其前缀只是一个 namespace,让定义唯一化,并且在网络上可访问。当然,一个简化的方法是可以在文件头声明一个公共前缀。

SPARQL 查询语言

有了语义网,自然需要在语义网中进行遍历查询,于是有了 RDF 的查询语言:SPARQL Protocol and RDF Query Language, pronounced “sparkle.”

PREFIX : <urn:example:>
SELECT ?personName WHERE {
  ?person :name ?personName.
  ?person :bornIn  / :within* / :name "United States".
  ?person :livesIn / :within* / :name "Europe".
}

他是 Cypher 的前驱,因此结构看起来很像:

(person) -[:BORN_IN]-> () -[:WITHIN*0..]-> (location)   # Cypher
?person   :bornIn /        :within*        ?location.   # SPARQL

SPARQL 没有区分边和属性的关系,都用了 Predicates。

(usa {name:'United States'})   # Cypher
?usa :name "United States".    # SPARQL

虽然语义网没有成功落地,但其技术栈影响了后来的知识图谱和图查询语言。

图模型和网络模型

图模型是网络模型旧瓶装新酒吗?

否,他们在很多重要的方面都不一样。

模型 图模型(Graph Model) 网络模型(Network Model)
连接方式 任意两个点之间都有可以有边 指定了嵌套约束
记录查找 1. 使用全局 ID
2. 使用属性索引。
3. 使用图遍历。
只能使用路径查询
有序性 点和边都是无序的 记录的孩子们是有序集合,在插入时需要考虑维持有序的开销
查询语言 即可命令式,也可以声明式 命令式的

查询语言前驱:Datalog

有点像 triple-store,但是变了下次序:(subject, predicate, object) → predicate(subject, object). 之前数据用 Datalog 表示为:

name(namerica, 'North America').
type(namerica, continent).
name(usa, 'United States').
type(usa, country).
within(usa, namerica).
name(idaho, 'Idaho').
type(idaho, state).
within(idaho, usa).
name(lucy, 'Lucy').
born_in(lucy, idaho).

查询从美国迁移到欧洲的人可以表示为:

within_recursive(Location, Name) :- name(Location, Name). /* Rule 1 */
within_recursive(Location, Name) :- within(Location, Via), /* Rule 2 */ 
                                    within_recursive(Via, Name).
migrated(Name, BornIn, LivingIn) :- name(Person, Name), /* Rule 3 */ 
                                    born_in(Person, BornLoc),
                                    within_recursive(BornLoc, BornIn),
                                    lives_in(Person, LivingLoc),
                                    within_recursive(LivingLoc, LivingIn).
?- migrated(Who, 'United States', 'Europe'). /* Who = 'Lucy'. */
  1. 代码中以大写字母开头的元素是变量,字符串、数字或以小写字母开头的元素是常量。下划线(_)被称为匿名变量
  2. 可以使用基本 Predicate 自定义 Predicate,类似于使用基本函数自定义函数。
  3. 逗号连接的多个谓词表达式为且的关系。

image.png

                                 条件匹配集合扩充

基于集合的逻辑运算:

  1. 根据基本数据子集选出符合条件集合。
  2. 应用规则,扩充原集合。
  3. 如果可以递归,则递归穷尽所有可能性。

Prolog(Programming in Logic的缩写)是一种逻辑编程语言。它创建在逻辑学的理论基础之上。

参考

  1. 声明式(declarative) vs 命令式(imperative)https://lotabout.me/2020/Declarative-vs-Imperative-language/
  2. SimmerChan 知乎专栏,知识图谱,语义网,RDF:https://www.zhihu.com/column/knowledgegraph
  3. MySQL 为什么叫“关系”模型:https://zhuanlan.zhihu.com/p/64731206


相关文章
|
6月前
|
XML NoSQL 数据库
【DDIA笔记】【ch2】 数据模型和查询语言 -- 概念 + 数据模型
【6月更文挑战第5天】本文探讨了数据模型的分析,关注点包括数据元素、关系及不同类型的模型(关系、文档、图)与Schema模式。查询语言的考量涉及与数据模型的关联及声明式与命令式编程。数据模型从应用开发者到硬件工程师的各抽象层次中起着简化复杂性的关键作用,理想模型应具备简洁直观和可组合性。
43 2
|
6月前
|
SQL JSON NoSQL
【DDIA笔记】【ch2】 数据模型和查询语言 -- 关系模型与文档模型
【6月更文挑战第6天】关系模型是主流数据库模型,以二维表形式展示数据,支持关系算子。分为事务型、分析型和混合型。尽管有其他模型挑战,如网状和层次模型,但关系模型仍占主导。然而,随着大数据增长和NoSQL的出现(如MongoDB、Redis),强调伸缩性、专业化查询和表达力,关系模型的局限性显现。面向对象编程与SQL的不匹配导致“阻抗不匹配”问题,ORM框架缓解但未完全解决。文档模型(如JSON)提供更自然的嵌套结构,适合表示复杂关系,具备模式灵活性和更好的数据局部性。
55 0
|
7月前
|
机器学习/深度学习 数据可视化 安全
数据库系统概念(第二周 第二堂)(关系模型)
数据库系统概念(第二周 第二堂)(关系模型)
|
7月前
|
存储 自然语言处理 算法
【软件设计师—基础精讲笔记6】第六章 结构化开发方法
【软件设计师—基础精讲笔记6】第六章 结构化开发方法
224 0
|
数据库
数据库原理—数据模型(三)
数据库原理—数据模型(三)
数据库原理—数据模型(三)
|
存储 数据库 数据库管理
数据库系统概论第七章(数据库设计)知识点总结(1)—— 概述
数据库设计是指对于一个给定的应用环境,构造(设计)优化的数据库逻辑模式和物理结构,并据此建立数据库及其应用系统,使之能够有效地存储和管理数据,满足各种用户的应用需求,包括信息管理要求和数据操作要求
255 0
数据库系统概论第七章(数据库设计)知识点总结(1)—— 概述
|
存储 数据库
数据库系统概论第六章(关系数据理论)知识点总结(3)—— 范式知识点总结
假定2014104学生只选修了3号课程这一门课,现在因身体不适,不选修3号课程了,要将课程号删除,但同时,由于课程号是主属性,此操作将导致该整个元组的删除。这样,2014104学生信息都被删除了
224 0
数据库系统概论第六章(关系数据理论)知识点总结(3)—— 范式知识点总结
|
存储 数据库
数据库系统概论第七章(数据库设计)知识点总结(2)—— 需求分析
安全性是指用户需要如何保护数据不被未授权的用户破坏;完整性是指用户需要如何检查和控制不合语义的、不正确的数据,防止它们进入数据库
252 0
数据库系统概论第七章(数据库设计)知识点总结(2)—— 需求分析