仅用30秒,Python就能学会的漂亮短代码,你学会了吗?

简介: 仅用30秒,Python就能学会的漂亮短代码,你学会了吗?

1.“二维列表”


**解读:**根据给定的长和宽,以及初始值,返回一个二维列表。

def initialize_2d_list(w, h, val=None):
    return [[val for x in range(w)] for y in range(h)]

eg

>>> initialize_2d_list(2,2)
[[None, None], [None, None]]
>>> initialize_2d_list(2,2,0)
[[0, 0], [0, 0]]


2.函数切割数组


**解读:**使用一个函数应用到一个数组的每个元素上,使得这个数组被切割成两个部分。如果说,函数应用到元素上返回的值为True,则该元素被切割到第一部分,否则分为第二部分。

def bifurcate_by(lst, fn):
    return [
      [x for x in lst if fn(x)],
      [x for x in lst if not fn(x)]
    ]

eg

>>> bifurcate_by(['beep', 'boop', 'foo', 'bar'], lambda x: x[0] == 'b') 
[['beep', 'boop', 'bar'], ['foo']]


3.“交集点”


解读: 两个数组在被一个函数应用后,从第一个数组中提取出共有的元素的原元素组成一个新的数组。

def intersection_by(a, b, fn):
    _b = set(map(fn, b))
    return [item for item in a if fn(item) in _b]

eg

>>> from math import floor
>>> intersection_by([2.1, 1.2], [2.3, 3.4],floor)
[2.1]


4.最大值下标


**解读:**返回数组中最大值的下标。

def max_element_index(arr):
    return arr.index(max(arr))

eg

>>> max_element_index([5, 8, 9, 7, 10, 3, 0])
4


5.数组对称差


**解读:**找出两个数组中不同的元素,并合成为一个新的数组。

def symmetric_difference(a, b):
    _a, _b = set(a), set(b)
    return [item for item in a if item not in _b] + [item for item in b if item not in _a]

eg

>>> symmetric_difference([1, 2, 3], [1, 2, 4])
[3, 4]


6.“夹数”


**解读:**如果 num 落在一段数字范围内,则返回num,否则返回离这个范围最近的边界:

def clamp_number(num,a,b):
    return max(min(num, max(a,b)),min(a,b))

eg

>> clamp_number(2,3,10)
3
>> clamp_number(7,3,10)
7
>> clamp_number(124,3,10)
10


7.键值映射


**解读:**使用对象的键重新创建对象,并运行函数为每个对象的键创建值。

使用dict.keys()遍历对象的键, 通过函数生成一个新的值。

def map_values(obj, fn):
    ret = {}
    for key in obj.keys():
        ret[key] = fn(obj[key])
    return ret

eg

>>> users = {
...   'fred': { 'user': 'fred', 'age': 40 },
...   'pebbles': { 'user': 'pebbles', 'age': 1 }
... }
>>> map_values(users, lambda u : u['age'])
{'fred': 40, 'pebbles': 1}
>>> map_values(users, lambda u : u['age']+1)
{'fred': 41, 'pebbles': 2}


8.大小写转换


解读: 将英文单词的首字母大写改为小写。

upper_rest参数:设定是否将除首字母外的其他字母大小写转换。

def decapitalize(s, upper_rest=False):
    return s[:1].lower() + (s[1:].upper() if upper_rest else s[1:])

eg

>>> decapitalize('FooBar')
'fooBar'
>>> decapitalize('FooBar', True)
'fOOBAR'


9.同键求和


**解读:**对列表中的各个字典里相同键值的对象求和。

def sum_by(lst, fn):
    return sum(map(fn,lst))

eg

>>> sum_by([{ 'n': 4 }, { 'n': 2 }, { 'n': 8 }], lambda v : v['n'])
14


10.一行代码求出现次数


**解读:**求出列表中某个数出现的次数和。

def count_occurrences(lst, val):
    return len([x for x in lst if x == val and type(x) == type(val)])

eg

>>> count_occurrences([1, 1, 2, 1, 2, 3], 1)
3


11.数字转数组



同样是一则关于map的应用,将整形数字拆分到数组中:

def digitize(n):
    return list(map(int, str(n)))

效果如下:

digitize(123)
# [1, 2, 3]


相关文章
|
2月前
|
开发框架 数据建模 中间件
Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器是那些静悄悄的幕后英雄。它们不张扬,却能默默地为函数或类增添强大的功能。本文将带你了解装饰器的魅力所在,从基础概念到实际应用,我们一步步揭开装饰器的神秘面纱。准备好了吗?让我们开始这段简洁而富有启发性的旅程吧!
56 6
|
3月前
|
存储 缓存 测试技术
Python中的装饰器:功能增强与代码复用的利器
在Python编程中,装饰器是一种强大而灵活的工具,它允许开发者以简洁优雅的方式增强函数或方法的功能。本文将深入探讨装饰器的定义、工作原理、应用场景以及如何自定义装饰器。通过实例演示,我们将展示装饰器如何在不修改原有代码的基础上添加新的行为,从而提高代码的可读性、可维护性和复用性。此外,我们还将讨论装饰器在实际应用中的一些最佳实践和潜在陷阱。
|
23天前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
58 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
2月前
|
Python
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
78 33
|
3月前
|
人工智能 数据挖掘 Python
Python编程基础:从零开始的代码旅程
【10月更文挑战第41天】在这篇文章中,我们将一起探索Python编程的世界。无论你是编程新手还是希望复习基础知识,本文都将是你的理想之选。我们将从最基础的语法讲起,逐步深入到更复杂的主题。文章将通过实例和练习,让你在实践中学习和理解Python编程。让我们一起开启这段代码之旅吧!
|
2月前
|
JavaScript API C#
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
52 10
|
2月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
105 8
|
2月前
|
API Python
【Azure Developer】分享一段Python代码调用Graph API创建用户的示例
分享一段Python代码调用Graph API创建用户的示例
68 11
|
2月前
|
测试技术 Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界中,装饰器是那些能够为我们的代码增添魔力的小精灵。它们不仅让代码看起来更加优雅,还能在不改变原有函数定义的情况下,增加额外的功能。本文将通过生动的例子和易于理解的语言,带你领略装饰器的奥秘,从基础概念到实际应用,一起开启Python装饰器的奇妙旅程。
57 11
|
2月前
|
Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器就像是给函数穿上了一件神奇的外套,让它们拥有了超能力。本文将通过浅显易懂的语言和生动的比喻,带你了解装饰器的基本概念、使用方法以及它们如何让你的代码变得更加简洁高效。让我们一起揭开装饰器的神秘面纱,看看它是如何在不改变函数核心逻辑的情况下,为函数增添新功能的吧!

热门文章

最新文章

推荐镜像

更多