技术解读倚天 ECS 实例——Arm 芯片的 Python-AI 算力优化 | 龙蜥技术

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 应该如何优化 CPU 上的 AI 推理算力?

深度学习技术在图像识别、搜索推荐等领域得到了广泛应用。近年来各大 CPU 厂商也逐渐把 AI 算力纳入了重点发展方向,通过《Arm 芯片 Python-AI 算力优化》我们将看到龙蜥社区 Arm 架构 SIG(Special Interest Group) 利用最新的 Arm  指令集优化 Python-AI 推理 workload 的性能。


倚天ECS实例的AI推理软件优化

阿里云推出的倚天Arm ECS实例,拥有针对AI场景的推理加速能力,我们将了解加速的原理以及以及相关的软件生态适配。

卷积神经网络(CNN)在图像和语音领域使用广泛,神经网络算法相比传统的算法消耗了更多算力。为了探索对计算的优化,我们进一步看到AlexNet模型(一种CNN)的推理过程的各个层的计算资源消耗占比。


可以看到名为conv[1-5]的5个卷积层消耗了90%的计算资源,因此优化CNN推理的关键就是优化卷积层的计算。

我们进一步来看如何对图像应用卷积核:

  1. 使用im2col根据卷积核尺寸,将图像转化为若干块(patch)
  2. 将多个卷积核展开成若干向量
  3. 对由图像块组成的矩阵和由多个卷积核展开组成的矩阵应用矩阵乘法

上面一页的计算应用了矩阵乘法操作,为什么我们不采用更加直接的迭代计算方式,而是采用需要额外内存的矩阵乘法呢?这里有两个关键因素:

  • 深度学习的卷积计算量很大,典型计算需要涉及5000万次乘法和加法操作,因此对计算的优化十分重要
  • 计算机科学家们已经深入探索了矩阵乘法操作,矩阵乘法操作可以被优化得非常快。


fortran世界中,GEMM(general matrix multiplication)已经成为一个通用操作:

该操作通过对数据重新排列,精心设计计算过程,利用多线程和向量指令,可以比自己实现的朴素版本快十倍以上。因此使用矩阵运算带来的收益相比额外的开销是值得的。

因为AI推理大量使用了矩阵乘法,如今也有许多硬件对矩阵运算进行了加速:

  • NVIDIA Volta架构引入了tensor core,可以高效地以混合精度处理矩阵乘
  • Intel AMX(Advanced Matrix Extensions) 通过脉动阵列在硬件层面支持矩阵乘
  • ARM SME(Scalable Matrix Extension) 支持向量外积运算,加速矩阵乘

虽然在AI算力上GPU要远高于CPU,但是CPU因为其部署方便,且无需在主机-设备间拷贝内存,在AI推理场景占有一席之地。目前市面上尚没有可以大规模使用的支持AMX或者SME的硬件,在这个阶段我们应该如何优化CPU上的AI推理算力呢?我们首先要了解BF16数据类型。


BF16(Brain Float 16)是由Google Brain 开发设计的16位浮点数格式。相比传统的IEEE16位浮点数,BF16拥有和IEEE单精度浮点数(FP32)一样的取值范围,但是精度较差。研究人员发现,在AI训练和推理中,使用BF16可以节约一半的内存,获得和单精度浮点数接近的准确率。

根据右图,BF16指数的位数和FP32是一致的,因此BF16和FP32的相互转换只要截断尾数即可,左下角图上便是tensorflow源码中的转换实现。

引入BF16的一大价值是如今的很多硬件计算的瓶颈在寄存器宽度或者访问内存的速度上,更紧凑的内存表示往往可以获得更高的计算吞吐,在理想情况下,BF16相比FP32可以提高一倍的吞吐(FLOPS)。

如今我们虽然无法大规模使用到支持AMX/SME的硬件,但是Armv8.6-A提供了bf16扩展,该扩展利用了有限的128bit向量寄存器,通过BFMMLA指令执行矩阵乘法运算:

  • 输入A: 大小为2*4的BF16矩阵,按行存储
  • 输入B: 大小为4*2的BF16矩阵,按列存储
  • 输出C: 大小为2*2的FP32矩阵


该指令单次执行进行了16次浮点数乘法和16次浮点数加法运算,计算吞吐非常高。


阿里巴巴向OpenBLAS项目贡献了sbgemm(s表示返回单精度,b表示输入bf16)的硬件加速实现,从GEMM吞吐上看,BF16相比FP32 GEMM吞吐提升超过100%。

倚天ECS实例是市面上少数可以支持bf16指令扩展的ARM服务器。目前已经支持了Tensorflow和Pytorch两种框架的AI推理

  • Tensorflow下可以通过OneDNN + ACL(Arm Compute Library)来使用BFMMLA加速
  • Pytorch已经支持了OneDNN + ACL,但是目前还在试验状态,无法很好地发挥性能。但是Pytorch同时支持OpenBLAS作为其计算后端,因此可以通过OpenBLAS来享受ARM bf16扩展带来的性能收益

可以看到相比默认的eigen实现,开启OneDNN + ACL后,perf获得的计算热点已经从fmla(向量乘加)转换到了bfmmla,算力显著提升。

从workload角度评测,上图对比了两种机型:

  • g7:Intel IceLake实例
  • g8m:倚天ARM服务器


左边柱状图中蓝色柱子表示算力对比,橙色柱子表示考虑性价比后使用倚天处理器获得的收益。可以看到在Resnet50BERT-Large模型的推理场景下,软件优化后的倚天处理器皆可获得一倍左右的性价比收益。

在上文中,我们看到使用倚天处理器若想获得较高收益,软件版本的选择十分重要。随意选择tensorflow或者pytorch包可能遭遇:

  • 未适配arm架构,安装失败
  • 软件未适配bf16扩展或者环境参数有误,无法发挥硬件的全部算力,性能打折
  • 需要精心选择计算后端,例如目前pytorch下OpenBLAS较快


因此我们提供了Docker镜像,帮助云上的用户充分使用倚天ECS实例的AI推理性能:

  • accc-registry.cn-hangzhou.cr.aliyuncs.com/tensorflow/tensorflow
  • accc-registry.cn-hangzhou.cr.aliyuncs.com/pytorch/pytorch

通过Serverless能力充分释放算力

除了使能更多的硬件指令,另一种充分释放硬件算力的方式就是通过Serverless架构提高CPU利用率。Python作为动态语言,其模块是动态导入的,因此启动速度不是Python的强项,这也制约了Python workload在Serverless场景的普及。

Python应用启动的主要耗时在模块导入,Python模块导入步骤为:

  1. 寻找到模块所在的文件
  2. 获得代码对象code_object
  3. 执行代码对象

其中的第二步在首次加载模块时,要对.py文件进行编译,获得code_object, 为了降低将来加载的开销,Python解释器会序列化并缓存code_object.pyc文件。


即便模块导入过程已经通过缓存机制优化过了,但是读取.pyc文件并反序列化依旧比较耗时。

在这里我们借助了OpenJDK的AppCDS的思路:将heap上的code_object复制到内存映射文件中(mmap)。在下次加载模块时,直接使用mmap中的code_object


这种框架下有两个难点:

  1. Python的code_object是散落在heap的各处且不连续的,因此mmap复制整个heap是行不通的。我们采用的方式是以code_object为根,遍历对象图,对感兴趣的内容复制并紧凑排布
  2. Python的code_object会引用.data段的变量,在Linux的随机地址安全机制下,.data段的数据的地址在每次运行时都会随机变化,这样mmap中的指针就失效了。我们的解决方式是遍历所有对象,针对.data段的指针进行偏移量修复


因为该项目共享了python的code_object,因此名字是code-data-share-for-python,简称pycds

我们测试了bota3numpyflask等常用的python苦,平均可以节省20%的模块导入耗时


对于现有的python应用可以轻易地使用pycds,且无需修改任何代码:

# 安装pycds
pip install code-data-share # 安装pycds
 # 生成模块列表
PYCDSMODE=TRACE PYCDSLIST=mod.lst python -c 'import numpy’
# 生成 archive
python -c 'import cds.dump; cds.dump.run_dump("mod.lst", "mod.img")’
# 使用archive
time PYCDSMODE=SHARE PYCDSARCHIVE=mod.img python -c 'import numpy'
real 0m0.090s
user 0m0.180s
sys 0m0.339s
# 对比基线
time python -c 'import numpy'
real 0m0.105s
user 0m0.216s
sys 0m0.476s

我们仅仅通过安装PyPI,修改环境变量运行和使用cdsAPI做dump即可对现有的应用启动进行加速了。


code-data-share-for-python是一个新项目,需要大家的参与和反馈,欢迎通过以下链接了解和使用:


ARM 架构 SIG链接地址:

https://openanolis.cn/sig/ARM_ARCH_SIG


—— 完 ——

加入龙蜥社群

加入微信群:添加社区助理-龙蜥社区小龙(微信:openanolis_assis),备注【龙蜥】与你同在;加入钉钉群:扫描下方钉钉群二维码。欢迎开发者/用户加入龙蜥社区(OpenAnolis)交流,共同推进龙蜥社区的发展,一起打造一个活跃的、健康的开源操作系统生态!

640.png

相关实践学习
2分钟自动化部署人生模拟器
本场景将带你借助云效流水线Flow实现人生模拟器小游戏的自动化部署
7天玩转云服务器
云服务器ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,可降低 IT 成本,提升运维效率。本课程手把手带你了解ECS、掌握基本操作、动手实操快照管理、镜像管理等。了解产品详情: https://www.aliyun.com/product/ecs
相关文章
|
13天前
|
弹性计算 监控 负载均衡
|
10天前
|
存储 缓存 安全
阿里云服务器内存型r7、r8a、r8y、r8i实例区别及选择参考
随着阿里云2024年金秋云创季的开始,目前在阿里云的活动中,属于内存型实例规格的云服务器有内存型r7、内存型r8a、内存型r8y和内存型r8i这几个实例规格,相比于活动内的经济型e和通用算力型u1等实例规格来说,这些实例规格等性能更强,虽然这几个实例规格的云服务器通常处理器与内存的配比为都是1:8,但是他们在处理器、存储、网络、安全等方面等性能并不是一样的,所以他们的适用场景也有着不同。本文为大家介绍内存型r7、r8a、r8y、r8i实例的性能、适用场景的区别以及选择参考。
|
13天前
|
机器学习/深度学习 弹性计算 编解码
阿里云服务器c7/c8a/c8y/c8i/g7/g8a/g8y/g8i/r7/r8a/r8y/r8i实例区别及选择参考
在阿里云目前的活动中,除了特价的轻量应用服务器和经济型e及通用算力型u1实例之外,属于计算型实例的实例有计算型c7/c8a/c8y/c8i,属于通用型实例的有通用型g7/g8a/g8y/g8i,属于内存型实例的有内存型r7/r8a/r8y/r8i。本文将详细介绍阿里云服务器中的c7、c8a、c8y、c8i、g7、g8a、g8y、g8i、r7、r8a、r8y、r8i等实例规格的性能、适用场景及选择参考,帮助用户更好地选择合适的云服务器实例。
|
16天前
|
存储 机器学习/深度学习 编解码
阿里云服务器计算型c7、c8a、c8y、c8i实例性能、适用场景区别及选择参考
随着阿里云2024年金秋云创季的开始,目前在阿里云的活动中,属于计算型实例规格的云服务器有计算型c7、计算型c8a、计算型c8y和计算型c8i这几个实例规格,相比于活动内的经济型e和通用算力型u1等实例规格来说,这些实例规格等性能更强,虽然这几个实例规格的云服务器通常处理器与内存的配比为都是1:2,但是他们在处理器、存储、网络、安全等方面等性能并不是一样的,所以他们的适用场景也有着不同。本文为大家介绍计算型c7、c8a、c8y、c8i实例的性能、适用场景的区别以及选择参考。
|
15天前
|
存储 人工智能 安全
阿里云服务器通用型g7、g8a、g8y、g8i实例区别及选择指南
目前在阿里云的活动中,属于通用型实例规格的云服务器有通用型g7、通用型g8a、通用型g8y和通用型g8i这几个实例规格,相比于活动内的经济型e和通用算力型u1等实例规格来说,这些实例规格等性能更强,虽然这几个实例规格的云服务器通常处理器与内存的配比为都是1:4,但是他们在处理器、存储、网络、安全等方面等性能并不是一样的,所以他们的适用场景也有着不同。本文为大家介绍通用型g7、g8a、g8y、g8i实例的性能、适用场景的区别以及选择参考。
|
23天前
|
存储 机器学习/深度学习 编解码
阿里云服务器计算型c7、计算型c8y、计算型c8i实例性能对比与选择参考
目前阿里云在售的云服务器中,主要包含了第6代、第7代、第8代实例规格的云服务器产品,从类别上来说,又分为计算型(c系列)、通用型(g系列)、内存型(r/re系列)、通用算力型(U实例)、大数据型(d系列)、本地SSD型(i系列)、高主频型(hf系列)等不同种类的云服务器实例规格,而在阿里云目前的活动中,计算型(c系列)主要计算型c7、计算型c8y和计算型c8i实例可选,有的新手用户并不清楚这三个计算型实例之间的差别,本文对这三个计算型实例的实例规格、CPU(核)、内存(G)、计算、存储、内存等方面为大家做个对比,让大家了解一下他们之间的不同,以供参考选择。
|
22天前
|
存储 安全 网络协议
阿里云服务器通用型g7、通用型g8y、通用型g8i实例性能和适用场景对比与选择参考
目前阿里云在售的云服务器中,主要包含了第6代、第7代、第8代实例规格的云服务器产品,在选择云服务器实例规格时,对于需要平衡计算、存储和网络性能的应用场景来说,通用型g7、通用型g8y和通用型g8i实例是许多用户的热门选择。为了帮助大家更好地了解这三款实例的区别,并为选择提供参考,本文将详细对比它们的实例规格、CPU、内存、计算、存储、网络等方面的性能,并附上活动价格对比。让大家了解一下他们之间的不同,以供参考选择。
|
27天前
|
机器学习/深度学习 弹性计算 缓存
阿里云服务器经济型e实例与通用算力型u1实例对比分析与选择指南
在阿里云服务器的实例规格中,经济型e实例和通用算力型u1实例是很多个人和普通企业级用户常见的选择,经济型e实例与通用算力型u1实例的主要区别在于性能、应用场景及价格策略。本文将详细对比这两种实例的性能、应用场景及价格策略,以供参考。
|
28天前
|
弹性计算 开发框架 .NET
阿里云服务器购买教程及云服务器地域、实例、操作系统、带宽等参数选择指南
对于初次购买阿里云服务器的用户来说,想使用阿里云服务器搭建网站或者运行APP、小程序等项目,第一步就是要先购买阿里云服务器,下面小编以图文形式给大家介绍一下阿里云服务器的购买流程,以及购买过程中如何云服务器地域、实例、带宽等关键配置和选择这些参数的一些注意事项,以供参考。
|
1月前
|
存储 机器学习/深度学习 应用服务中间件
阿里云倚天云服务器实例:计算型c8y、通用型g8y、内存型r8y实例介绍
阿里云倚天云服务器是基于阿里云自研的倚天710 ARM架构CPU打造的高性能计算产品系列,它依托先进的第四代神龙架构,旨在为用户提供稳定可预期的超高效能体验。倚天云服务器在存储、网络性能及计算稳定性方面实现了显著提升,主要得益于其芯片级的快速路径加速技术。本文将深度解析阿里云倚天云服务器的计算型c8y、通用型g8y、内存型r8y实例,探讨其优势及适用场景,以供选择参考。

相关产品

  • 云服务器 ECS