阿里开源强化学习研究平台Gym StarCraft

简介: 星际争霸一直是游戏玩家心目中即时战略类的经典之作,历时十多年而不衰。而如今它更成为深度强化学习、人工智能算法研究的一个主要平台和工具。因为其蕴含了多智能体协作、多任务学习、宏观策略规划等复杂问题,一旦取得部分突破和进展,对商业和社会发展都会带来极大影响。

星际争霸一直是游戏玩家心目中即时战略类的经典之作,历时十多年而不衰。而如今它更成为深度强化学习、人工智能算法研究的一个主要平台和工具。因为其蕴含了多智能体协作、多任务学习、宏观策略规划等复杂问题,一旦取得部分突破和进展,对商业和社会发展都会带来极大影响。如国外的DeepMind、Facebook等公司相继投入大量人力基于它进行通用人工智能的研究。

image


在星际争霸的AI研究中,一直以来缺乏完善的工具链和开发环境。今年年初Facebook公司发布的TorchCraft打通了星际和Torch之间的桥梁,但却不支持主流的Python开发语言和TensorFlow深度学习框架;早前OpenAI公司发布的Gym算法平台虽然支持众多游戏环境下的算法验证和对比测试,但却缺少对星际的支持。

阿里巴巴作为国内领先的大数据、云计算公司,对以强化学习为代表的人工智能技术密切关注并投入巨大。针对星际AI的这一现状,率先开发了一套专业易用的研究平台Gym StarCraft,并且已经开源。

在Gym StarCraft中,AI和强化学习研究者可以非常方便地使用Python语言来进行深度强化学习智能Agent的开发,它底层完成了对TorchCraft和OpenAI Gym的封装,支持基于TensorFlow和Keras等主流算法框架进行开发,仅需几十行代码即可完成一个基本的智能Agent的开发。同时,便于评测智能Agent的有效性,Gym StarCraft被集成在了OpenAI Gym这一主流的强化学习AI评测平台中,支持世界各地的星际AI研究者基于它去进行公平、快捷的效果评估,提供了一个人工智能的开放协作研究平台。

要了解更多该项目,请访问:https://github.com/deepcraft/gym-starcraft

原文链接

相关文章
|
7月前
|
人工智能 前端开发 JavaScript
2023年度编程语言榜首之预测与AI时代下的学习计划
在技术圈中,TIOBE编程社区指数一直被视为衡量编程语言受欢迎程度的重要指标,而且长期以来,大家也都知道Python一直稳居榜首。但是据悉,TIOBE官方近期做出了大胆的预测,认为C#有可能成为2023年度编程语言的冠军。2023年的倒计时已经拉开帷幕,还有短短几天时间,关于2023年度编程语言的预测,以及C#是否有可能成为榜首,这些都即将揭开神秘面纱。那么本文就来简单聊聊年度编程语言的结果,以及在AI时代下的该怎么去学习新语言。
236 55
2023年度编程语言榜首之预测与AI时代下的学习计划
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:机器学习入门指南
【10月更文挑战第30天】本篇文章是一份初学者友好的机器学习入门指南,旨在帮助读者理解并开始实践机器学习。我们将介绍机器学习的基本概念,包括监督学习、无监督学习和强化学习等。我们还将提供一些实用的代码示例,以帮助读者更好地理解和应用这些概念。无论你是编程新手,还是有一定经验的开发者,这篇文章都将为你提供一个清晰的机器学习入门路径。
39 2
|
3月前
|
机器学习/深度学习 数据挖掘 TensorFlow
从数据小白到AI专家:Python数据分析与TensorFlow/PyTorch深度学习的蜕变之路
【9月更文挑战第10天】从数据新手成长为AI专家,需先掌握Python基础语法,并学会使用NumPy和Pandas进行数据分析。接着,通过Matplotlib和Seaborn实现数据可视化,最后利用TensorFlow或PyTorch探索深度学习。这一过程涉及从数据清洗、可视化到构建神经网络的多个步骤,每一步都需不断实践与学习。借助Python的强大功能及各类库的支持,你能逐步解锁数据的深层价值。
73 0
|
5月前
|
机器学习/深度学习 人工智能 TensorFlow
🔥零基础逆袭!Python数据分析+机器学习:TensorFlow带你秒变AI大师
【7月更文挑战第29天】在这个数据驱动的时代,掌握Python与机器学习技能是进入AI领域的关键。即使从零开始,也能通过TensorFlow成为AI专家。
68 8
|
4月前
|
机器学习/深度学习 人工智能 算法
深入探索TensorFlow在强化学习中的应用:从理论到实践构建智能游戏AI代理
【8月更文挑战第31天】强化学习作为人工智能的一个重要分支,通过智能体与环境的互动,在不断试错中学习达成目标。本文介绍如何利用TensorFlow构建高效的强化学习模型,并应用于游戏AI。智能体通过执行动作获得奖励或惩罚,旨在最大化长期累积奖励。TensorFlow提供的强大工具简化了复杂模型的搭建与训练,尤其适用于处理高维数据。通过示例代码展示如何创建并训练一个简单的CartPole游戏AI,证明了该方法的有效性。未来,这项技术有望拓展至更复杂的应用场景中。
54 0
|
5月前
|
机器学习/深度学习 人工智能 数据挖掘
从0到1构建AI帝国:PyTorch深度学习框架下的数据分析与实战秘籍
【7月更文挑战第30天】PyTorch以其灵活性和易用性成为深度学习的首选框架。
75 2
|
7月前
|
机器学习/深度学习 人工智能 算法
【Python 机器学习专栏】强化学习在游戏 AI 中的实践
【4月更文挑战第30天】强化学习在游戏AI中展现巨大潜力,通过与环境交互和奖励信号学习最优策略。适应性强,能自主探索,挖掘出惊人策略。应用包括策略、动作和竞速游戏,如AlphaGo。Python是实现强化学习的常用工具。尽管面临训练时间长和环境复杂性等挑战,但未来强化学习将与其他技术融合,推动游戏AI发展,创造更智能的游戏体验。
377 0
|
7月前
|
机器学习/深度学习 人工智能 算法
从零开始学习Python人工智能:神经网络和机器学习入门指南
从零开始学习Python人工智能:神经网络和机器学习入门指南
273 4
|
人工智能 算法 计算机视觉
AidLux智慧社区AI实战训练总结
AidLux智慧社区AI实战训练总结
AidLux智慧社区AI实战训练总结
|
机器学习/深度学习 自然语言处理 文字识别
机器学习开发者不可错过的ModelScope开源模型社区
对于刚刚接触机器学习的开发者来说,ModelScope开源模型社区是你不容错过的选择! 快速入门及环境安装,可以在线体验也可以本地开发。
958 1
机器学习开发者不可错过的ModelScope开源模型社区
下一篇
DataWorks