18_mysql中InnoDB的页结构

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 学习笔记
参考来源:

康师傅:https://www.bilibili.com/video/BV1iq4y1u7vj?p=121

爱编程的大李子:https://blog.csdn.net/LXYDSF/article/details/125974218

一、概述

(Page)是磁盘与内存交互基本单位,是数据库管理存储空间的基本单位 , 也是数据库I/O操作的最小单位。InnoDB将数据划分为若干个页,InnoDB中页的大小默认为16KB。在数据库中,不论读一行, 还是读多行,都是将这些行所在的页进行加载,也就是一次最少从磁盘中读取16KB的内容到内存中,一次最少把内存中的16KB内容刷新到磁盘中。一个页中可以存储多个行记录。

页a、页b、页c ..页n这些页可以不在物理结构上相连,只要通过双向链表相关联即可。每个数据页中的记录会按照主键值从小到大的顺序组成一个单向链表,每个数据页都会为存储在它里边的记录生成一个页目录,在通过主键查找某条记录的时候可以在页目录中使用二分法快速定位到对应的槽,然后再遍历该槽对应分组中的记录即可快速找到指定的记录。

1. 页的上层结构:

在数据库中,还存在着区(Extent)、段(Segment)和表空间(Tablespace)的概念。行、页、区、段、表空间的关系如下图所示:

49.png

  • 区(Extent)是比页大一级的存储结构,在InnoDB存储引擎中,一个区会分配64个连续的页。因为InnoDB中的页大小默认是16KB,所以一个区的大小是64*16KB= 1MB。
  • 段(Segment)由一个或多个区组成,区在文件系统是一个连续分配的空间(在InnoDB中是连续的64个页)不过在段中不要求区与区之间是相邻的。段是数据库中的分配单位,不同类型的数据库对象以不同的段形式存在。当我们创建数据表、索引的时候,就会相应创建对应的段,比如创建一张表时会创建一个表段,创建一个索引时会创建一个索引段。
  • 表空间(Tablespace)是一个逻辑容器,表空间存储的对象是段,在一个表空间中可以有一个或多个段,但是个段只能属于一个表空间。数据库由一个或多个表空间组成,表空间从管理上可以划分为系统表空间、用户表空间、撤销表空间、临时表空间等。

2. 页的内部结构:

页如果按类型划分的话,常见的有数据页(保存B+树节点)、系统页Undo页事务数据页等。数据页是我们最常使用的页。

数据页的16KB大小的存储空间被划分为七个部分,分别是文件头(File Header)、页头(Page Header)、最大最小记录(Infimum+supremum)、用户记录(User Records)、空闲空间(Free Space)、页目录(Page Directory)和文件尾(File Tailer) 。

页结构的示意图如下所示:

50.png

2.1 File Header(文件头部)

作用:描述各种页的通用信息。(比如页的编号、其上一页、下一页是谁等)
构成:
51.png

  • FIL_PAGE_OFFSET(4字节)
    每一个页都有一个单独的页号,就跟你的身份证号码一样,InnoDB通过页号可以唯一定位一个页。
  • FIL_PAGE_TYPE(2字节)

    这个代表当前页的类型,如下

52.png

  • FIL_PAGE_PREV(4字节)和FIL_PAGE_NEXT(4字节)

    InnoDB都是以页为单位存放数据的,如果数据分散到多个不连续的页中存储的话需要把这些页关联起来,FIL_PAGE_PREV和FIL_PAGE_NEXT就分别代表本页的上一个和下一个页的页号。这样通过建立一个双向链表把许许多多的页就都串联起来了,保证这些页之间不需要是物理上的连续,而是逻辑上的连续。

  • FIL_PAGE_SPACE_OR_CHKSUM(4字节)

    文件头部和文件尾部都有属性作用:

    作用:

    InnoDB存储引擎以页为单位把数据加载到内存中处理,如果该页中的数据在内存中被修改了,那么在修改后的某个时间需要把数据同步到磁盘中。但是在同步了一半的时候断电了,造成了该页传输的不完整。

    每当一个页面在内存中修改了,在同步之前就要把它的校验和算出来,因为File Header在页面的前边,所以校验和会被首先同步到磁盘,当完全写完时,校验和也会被写到页的尾部,如果完全同步成功,则页的首部和尾部的校验和应该是一致的。如果写了一半儿断电了,那么在File Header中的校验和就代表着已经修改过的页,而在File Trailer中的校验和代表着原先的页,二者不同则意味着同步中间出了错。这里,校验方式就是采用 Hash 算法进行校验。

2.2 File Trailer(文件尾部)

  • 前4个字节代表页的校验和:

    这个部分是和File Header中的校验和相对应的。

  • 后4个字节代表页面被最后修改时对应的日志序列位置(LSN):

    这个部分也是为了校验页的完整性的,如果首部和尾部的LSN值校验不成功的话,就说明同步过程出现了问题。

2.3 Free Space (空闲空间)

我们自己存储的记录会按照指定的行格式存储到User Records部分。但是在一开始生成页的时候,其实并没有User Records这个部分,每当我们插入一条记录,都会从Free Space部分,也就是尚未使用的存储空间中申请一个记录大小的空间划分到User Records部分,当Free Space部分的空间全部被User Records部分替代掉之后,也就意味着这个页使用完了,如果还有新的记录插入的话,就需要去申请新的页了。

2.4 User Records (用户记录)

User Records中的这些记录按照指定的行格式一条一条摆在User Records部分,相互之间形成单链表。

2.5 Infimum + Supremum(最小最大记录)

InnoDB规定的最小记录与最大记录这两条记录的构造十分简单,都是由5字节大小的记录头信息和8字节大小的一个固定的部分组成的,如图所示:

53.png

这两条记录不是我们自己定义的记录,所以它们并不存放在页的User Records部分,他们被单独放在一个称为Infimum + Supremum的部分,如图所示:

54.png

2.6 Page Directory(页目录)

在页中,记录是以单向链表的形式进行存储的。单向链表的特点就是插入、删除非常方便,但是检索效率不高,最差的情况下需要遍历链表上的所有节点才能完成检索。因此在页结构中专门设计了页目录这个模块,专门给记录做一个目录,通过二分查找法的方式进行检索,提升效率。

使用页目录,二分法查找:

  1. 将所有的记录分成几个组,这些记录包括最小记录和最大记录,但不包括标记为“已删除”的记录。

    • 第 1 组,也就是最小记录所在的分组只有 1 个记录;
    • 最后一组,就是最大记录所在的分组,会有 1-8 条记录;
    • 其余的组记录数量在 4-8 条之间。

    这样做的好处是,除了第 1 组(最小记录所在组)以外,其余组的记录数会尽量平分。

  2. 在每个组中最后一条记录的头信息中会存储该组一共有多少条记录,作为 n_owned 字段。
  3. 页目录用来存储每组最后一条记录的地址偏移量,这些地址偏移量会按照先后顺序存储起来,每组的地址偏移量也被称之为槽(slot),每个槽相当于指针指向了不同组的最后一个记录。

2.7 Page Header(页面头部)

为了能得到一个数据页中存储的记录的状态信息,比如本页中已经存储了多少条记录,第一条记录的地址是什么,页目录中存储了多少个槽等等,特意在页中定义了一个叫Page Header的部分,这个部分占用固定的56个字节,专门存储各种状态信息。

55.png

  • PAGE_DIRECTION
    假如新插入的一条记录的主键值比上一条记录的主键值大,我们说这条记录的插入方向是右边,反之则是左边。用来表示最后一条记录插入方向的状态就是PAGE_DIRECTION。
  • PAGE_N_DIRECTION
    假设连续几次插入新记录的方向都是一致的,InnoDB会把沿着同一个方向插入记录的条数记下来,这个条数就用PAGE_N_DIRECTION这个状态表示。当然,如果最后一条记录的插入方向改变了的话,这个状态的值会被清零重新统计。
相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
5月前
|
存储 关系型数据库 MySQL
MySQL数据库进阶第六篇(InnoDB引擎架构,事务原理,MVCC)
MySQL数据库进阶第六篇(InnoDB引擎架构,事务原理,MVCC)
|
1月前
|
存储 缓存 关系型数据库
详细解析MySQL中的innodb和myisam
总之,InnoDB和MyISAM各有千秋,选择合适的存储引擎应基于对应用程序特性的深入理解,以及对性能、数据完整性和可扩展性的综合考量。随着技术发展,InnoDB因其全面的功能和日益优化的性能,逐渐成为更广泛场景下的首选。然而,在特定条件下,MyISAM依然保留其独特的价值。
101 0
|
3月前
|
监控 关系型数据库 MySQL
在Linux中,mysql的innodb如何定位锁问题?
在Linux中,mysql的innodb如何定位锁问题?
|
3月前
|
SQL 存储 关系型数据库
"MySQL增列必锁表?揭秘InnoDB在线DDL,让你的数据库操作飞一般,性能无忧!"
【8月更文挑战第11天】在数据库领域,MySQL凭借其稳定高效的表现深受开发者喜爱。对于是否会在给数据表添加列时锁表的问题,MySQL的行为受版本、存储引擎等因素影响。从5.6版起,InnoDB支持在线DDL,可在改动表结构时保持表的可访问性,避免长时间锁表。而MyISAM等则需锁表完成操作。例如,在使用InnoDB的表上运行`ALTER TABLE users ADD COLUMN email VARCHAR(255);`时,通常不会完全锁表。虽然在线DDL提高了灵活性,但复杂操作或大表变更仍可能暂时影响性能。因此,进行结构变更前应评估其影响并择机执行。
70 6
|
5月前
|
存储 SQL 关系型数据库
【MySQL技术内幕】6.3-InnoDB中的锁
【MySQL技术内幕】6.3-InnoDB中的锁
198 57
|
4月前
|
存储 SQL 关系型数据库
(十三)MySQL引擎篇:半道出家的InnoDB为何能替换官方的MyISAM?
MySQL是一款支持拔插式引擎的数据库,在开发过程中你可以根据业务特性,从支持的诸多引擎中选择一款适合的,例如MyISAM、InnoDB、Merge、Memory(HEAP)、BDB(BerkeleyDB)、Example、Federated、Archive、CSV、Blackhole.....
|
5月前
|
存储 关系型数据库 MySQL
关系型数据库mysql的InnoDB
【6月更文挑战第17天】
43 3
|
4月前
|
存储 关系型数据库 MySQL
MySQL InnoDB存储引擎的优点有哪些?
上述提到的特性和优势使得InnoDB引擎非常适合那些要求高可靠性、高性能和事务支持的场景。在使用MySQL进行数据管理时,InnoDB通常是优先考虑的存储引擎选项。
166 0
|
5月前
|
关系型数据库 MySQL 调度
深入理解MySQL InnoDB线程模型
深入理解MySQL InnoDB线程模型
|
5月前
|
存储 关系型数据库 MySQL
mysql的InnoDB引擎实现ACID特性的原理
mysql的InnoDB引擎实现ACID特性的原理