【云原生Kubernetes系列第三篇】二进制部署单节点Kubernetes(k8s)v1.20(不要因为别人都在交卷,自己就乱写答案)(一)

本文涉及的产品
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
容器服务 Serverless 版 ACK Serverless,952元额度 多规格
简介: 【云原生Kubernetes系列第三篇】二进制部署单节点Kubernetes(k8s)v1.20(不要因为别人都在交卷,自己就乱写答案)(一)

前言


常见的K8S按照部署方式:


●Minikube


Minikube是一个工具,可以在本地快速运行一个单节点微型K8S,仅用于学习、预览K8S的一些特性使用。

部署地址:https://kubernetes.io/docs/setup/minikube


●Kubeadmin


Kubeadmin也是一个工具,提供kubeadm init和kubeadm join,用于快速部署K8S集群,相对简单。

https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm


二进制安装部署


生产首选,从官方下载发行版的二进制包,手动部署每个组件和自签TLS证书,组成K8S集群,新手推荐。

https://github.com/kubernetes/kubernetes/releases


一、实验环境


主机 IP地址 组件
k8s集群master01 192.168.109.131 kube-apiserver kube-controller-manager kube-scheduler
k8s集群node01 192.168.109.132 kubelet kube-proxy docker
k8s集群node02 192.168.109.133 kubelet kube-proxy docker
etcd集群节点1 192.168.109.131 etcd
etcd集群节点2 192.168.109.132 etcd
etcd集群节点3 192.168.109.133 etcd


考虑到电脑性能,我将etcd部署在master和node节点上,并且我这边只搭建两个node节点


二、操作系统初始化配置


#关闭防火墙
systemctl stop firewalld
systemctl disable firewalld
iptables -F && iptables -t nat -F && iptables -t mangle -F && iptables -X
#-X清除自定义的规则
#关闭selinux
setenforce 0
sed -i 's/enforcing/disabled/' /etc/selinux/config
#关闭swap
swapoff -a
sed -ri 's/.*swap.*/#&/' /etc/fstab 
#根据规划设置主机名
hostnamectl set-hostname master01
hostnamectl set-hostname node01
hostnamectl set-hostname node02
#在master添加hosts
cat >> /etc/hosts << EOF
192.168.109.131 master01
192.168.109.132 node01
192.168.109.133 node02
EOF
#调整内核参数
cat > /etc/sysctl.d/k8s.conf << EOF
#开启网桥模式,可将网桥的流量传递给iptables链
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
#关闭ipv6协议
net.ipv6.conf.all.disable_ipv6=1
net.ipv4.ip_forward=1
EOF
sysctl --system
#时间同步
yum install ntpdate -y
ntpdate time.windows.com


三、部署 etcd 集群


etcd是Coreos团队于2013年6月发起的开源项目,它的目标是构建一个高可用的分布式键值(key-value)数据库。etcd内部采用rart协议作为致性算法,etcd是go语言编写的。


etcd作为服务发现系统,有以下的特点:


简单:安装配置简单,而且提供了HTTPAPI进行交互,使用也很简单安全:支持SSL证书验证

快速:单实例支持每秒2k+读操作

可靠:采用raft算法,实现分布式系统数据的可用性和一致性

etcd 目前默认使用2379端口提供HTTPAPI服务,2380端口和peer通信(这两个端口已经被IANA(互联网数字分配机构)官方预留给etcd)。


即etcd默认使用2379端口对外为客户端提供通讯,使用端口2380来进行服务器间内部通讯。


etcd在生产环境中一般推荐集群方式部著。由于etcd的leader选举机制,要求至少为3台或以上的奇数台。


3.1 准备签发证书环境

CFSSL是CloudFlare公司开源的一款PKI/TLS工具。CFSSL包含一个命令行工具和一个用于签名、验证和捆绑TLS证书的HTTPAPI服务。使用Go语言编写。


CFSSIL使用配置文件生成证书,因此自签之前,需要生成它识别的json格式的配置文件,CFSSL提供了方便的命令行生成配置文件。


CFSSL用来为etcd提供TLS证书,它支持签三种类型的证书:


1.client 证书,服务端连接客户端时携带的证书,用于客户端验证服务端身份,如kube-apiserver 访问 etcd;

2.server证书,客户端连接服务端时携带的证书,用于服务端验证客户端身份,如etcd对外提供服务;

3.peer证书,相互之间连接时使用的证书,如etcd节点之间进行验证和通信。

这里为了方便全部都使用同一套证书认证,生产环境中一般不这样使用。


3.2 准备cfssl证书生成工具

在master01节点上操作


linux下载两种方式:


wget 源URL地址 [-o 指定路径]


curl -L 源URL地址 -o 指定路径


#准备cfssl证书生成工具
wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 -O /usr/local/bin/cfssl
wget https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64 -O /usr/local/bin/cfssljson
wget https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64 -O /usr/local/bin/cfssl-certinfo
#也可以下载好上传上去
chmod +x /usr/local/bin/cfssl*



cfssl:#证书签发的工具命令
cfssljson:#将cfss1生成的证书(json格式)变为文件承载式证书
cfssl-certinfo:#验证证书的信息
cfssl-certinfo-cert <证书名称>  #查看证书的信息


3.3 生成Etcd证书

mkdir /opt/k8s
cd /opt/k8s/
#上传 etcd-cert.sh 和 etcd.sh 到 /opt/k8s/ 目录中
chmod +x etcd-cert.sh etcd.sh
#创建用于生成CA证书、etcd 服务器证书以及私钥的目录
mkdir /opt/k8s/etcd-cert
mv etcd-cert.sh etcd-cert/
cd /opt/k8s/etcd-cert/
./etcd-cert.sh   #生成了CA证书、etcd服务器证书以及私钥



etcd-cert.sh文件解读


#!/bin/bash
#配置证书生成策略,让 CA 软件知道颁发有什么功能的证书,生成用来签发其他组件证书的根证书
#可以定义多个项目,指定功能、日期等
cat > ca-config.json <<EOF
{
  "signing": {
    "default": {
      "expiry": "87600h"  
    },
    "profiles": {
      "www": {
         "expiry": "87600h",
         "usages": [
            "signing",
            "key encipherment",
            "server auth",
            "client auth"
        ]
      }
    }
  }
}
EOF
#ca-config.json:可以定义多个 profiles,分别指定不同的过期时间、使用场景等参数;
#后续在签名证书时会使用某个 profile;此实例只有一个 www 模板。
#expiry:指定了证书的有效期,87600h 为10年,如果用默认值一年的话,证书到期后集群会立即宕掉
#signing:表示该证书可用于签名其它证书;生成的 ca.pem 证书中 CA=TRUE;
#key encipherment:表示使用非对称密钥加密,如 RSA 加密;
#server auth:表示client可以用该 CA 对 server 提供的证书进行验证;
#client auth:表示server可以用该 CA 对 client 提供的证书进行验证;
#注意标点符号,最后一个字段一般是没有逗号的。
#-----------------------
#生成CA证书和私钥(根证书和私钥)
#特别说明: cfssl和openssl有一些区别,openssl需要先生成私钥,然后用私钥生成请求文件,最后生成签名的证书和私钥等,但是cfssl可以直接得到请求文件。
cat > ca-csr.json <<EOF
{
    "CN": "etcd",
    "key": {
        "algo": "rsa",
        "size": 2048
    },
    "names": [
        {
            "C": "CN",
            "L": "Beijing",
            "ST": "Beijing"
        }
    ]
}
EOF
#CN:Common Name,浏览器使用该字段验证网站或机构是否合法,一般写的是域名 
#key:指定了加密算法,一般使用rsa(size:2048)
#C:Country,国家
#ST:State,州,省
#L:Locality,地区,城市
#O: Organization Name,组织名称,公司名称
#OU: Organization Unit Name,组织单位名称,公司部门
cfssl gencert -initca ca-csr.json | cfssljson -bare ca
#生成的文件:
#ca-key.pem:根证书私钥
#ca.pem:根证书
#ca.csr:根证书签发请求文件
#cfssl gencert -initca <CSRJSON>:使用 CSRJSON 文件生成生成新的证书和私钥。如果不添加管道符号,会直接把所有证书内容输出到屏幕。
#注意:CSRJSON 文件用的是相对路径,所以 cfssl 的时候需要 csr 文件的路径下执行,也可以指定为绝对路径。
#cfssljson 将 cfssl 生成的证书(json格式)变为文件承载式证书,-bare 用于命名生成的证书文件。
#-----------------------
#生成 etcd 服务器证书和私钥
cat > server-csr.json <<EOF
{
    "CN": "etcd",
    "hosts": [
    "192.168.109.131",
    "192.168.109.132",
    "192.168.109.133"
    ],
    "key": {
        "algo": "rsa",
        "size": 2048
    },
    "names": [
        {
            "C": "CN",
            "L": "BeiJing",
            "ST": "BeiJing"
        }
    ]
}
EOF
#hosts:将所有 etcd 集群节点添加到 host 列表,需要指定所有 etcd 集群的节点 ip 或主机名不能使用网段,新增 etcd 服务器需要重新签发证书。
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=www server-csr.json | cfssljson -bare server
#生成的文件:
#server.csr:服务器的证书请求文件
#server-key.pem:服务器的私钥
#server.pem:服务器的数字签名证书
#-config:引用证书生成策略文件 ca-config.json
#-profile:指定证书生成策略文件中的的使用场景,比如 ca-config.json 中的 www


3.4 启动etcd服务

#上传 etcd-v3.4.9-linux-amd64.tar.gz 到 /opt/k8s 目录中,启动etcd服务
cd /opt/k8s/
tar zxvf etcd-v3.4.9-linux-amd64.tar.gz
mkdir -p /opt/etcd/{cfg,bin,ssl}
cd /opt/k8s/etcd-v3.4.9-linux-amd64/
#etcd相关的服务管理文件移动到bin目录下
mv etcd etcdctl /opt/etcd/bin/
#证书文件复制到ssl文件下
cp /opt/k8s/etcd-cert/*.pem /opt/etcd/ssl/
cd /opt/k8s/
./etcd.sh etcd01 192.168.109.131 etcd02=https://192.168.109.132:2380,etcd03=https://192.168.109.133:2380



etcd.sh文件解读


#!/bin/bash
#创建etcd配置文件/opt/etcd/cfg/etcd
ETCD_NAME=$1
ETCD_IP=$2
ETCD_CLUSTER=$3
WORK_DIR=/opt/etcd
cat > $WORK_DIR/cfg/etcd  <<EOF
#[Member]
ETCD_NAME="${ETCD_NAME}"
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_PEER_URLS="https://${ETCD_IP}:2380"
ETCD_LISTEN_CLIENT_URLS="https://${ETCD_IP}:2379"
#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://${ETCD_IP}:2380"
ETCD_ADVERTISE_CLIENT_URLS="https://${ETCD_IP}:2379"
ETCD_INITIAL_CLUSTER="etcd01=https://${ETCD_IP}:2380,${ETCD_CLUSTER}"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new"
EOF
#Member:成员配置
#ETCD_NAME:节点名称,集群中唯一。成员名字,集群中必须具备唯一性,如etcd01
#ETCD_DATA_DIR:数据目录。指定节点的数据存储目录,这些数据包括节点ID,集群ID,集群初始化配置,Snapshot文件,若未指定-wal-dir,还会存储WAL文件;如果不指定会用缺省目录
#ETCD_LISTEN_PEER_URLS:集群通信监听地址。用于监听其他member发送信息的地址。ip为全0代表监听本机所有接口
#ETCD_LISTEN_CLIENT_URLS:客户端访问监听地址。用于监听etcd客户发送信息的地址。ip为全0代表监听本机所有接口
#Clustering:集群配置
#ETCD_INITIAL_ADVERTISE_PEER_URLS:集群通告地址。其他member使用,其他member通过该地址与本member交互信息。一定要保证从其他member能可访问该地址。静态配置方式下,该参数的value一定要同时在--initial-cluster参数中存在
#ETCD_ADVERTISE_CLIENT_URLS:客户端通告地址。etcd客户端使用,客户端通过该地址与本member交互信息。一定要保证从客户侧能可访问该地址
#ETCD_INITIAL_CLUSTER:集群节点地址。本member使用。描述集群中所有节点的信息,本member根据此信息去联系其他member
#ETCD_INITIAL_CLUSTER_TOKEN:集群Token。用于区分不同集群。本地如有多个集群要设为不同
#ETCD_INITIAL_CLUSTER_STATE:加入集群的当前状态,new是新集群,existing表示加入已有集群。
#创建etcd.service服务管理文件
cat > /usr/lib/systemd/system/etcd.service <<EOF
[Unit]
Description=Etcd Server
After=network.target
After=network-online.target
Wants=network-online.target
[Service]
Type=notify
EnvironmentFile=${WORK_DIR}/cfg/etcd
ExecStart=${WORK_DIR}/bin/etcd \
--cert-file=${WORK_DIR}/ssl/server.pem \
--key-file=${WORK_DIR}/ssl/server-key.pem \
--trusted-ca-file=${WORK_DIR}/ssl/ca.pem \
--peer-cert-file=${WORK_DIR}/ssl/server.pem \
--peer-key-file=${WORK_DIR}/ssl/server-key.pem \
--peer-trusted-ca-file=${WORK_DIR}/ssl/ca.pem \
--logger=zap \
--enable-v2
Restart=on-failure
LimitNOFILE=65536
[Install]
WantedBy=multi-user.target
EOF
#--enable-v2:开启 etcd v2 API 接口。当前 flannel 版本不支持 etcd v3 通信
#--logger=zap:使用 zap 日志框架。zap.Logger 是go语言中相对日志库中性能最高的
#--peer开头的配置项用于指定集群内部TLS相关证书(peer 证书),这里全部都使用同一套证书认证
#不带--peer开头的的参数是指定 etcd 服务器TLS相关证书(server 证书),这里全部都使用同一套证书认证
systemctl daemon-reload
systemctl enable etcd
systemctl restart etcd


#复制配置文件到其他节点
scp -r /opt/etcd/ root@192.168.109.132:/opt/
scp -r /opt/etcd/ root@192.168.109.133:/opt/
scp /usr/lib/systemd/system/etcd.service root@192.168.109.132:/usr/lib/systemd/system/
scp /usr/lib/systemd/system/etcd.service root@192.168.109.133:/usr/lib/systemd/system/
#在 node01 节点上操作
vim /opt/etcd/cfg/etcd
#[Member]
ETCD_NAME="etcd02"            #修改
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_PEER_URLS="https://192.168.109.132:2380"    #修改
ETCD_LISTEN_CLIENT_URLS="https://192.168.109.132:2379"  #修改
#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.109.132:2380"  #修改
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.109.132:2379"    #修改
ETCD_INITIAL_CLUSTER="etcd01 192.168.109.131 etcd02=https://192.168.109.132:2380,etcd03=https://192.168.109.133:2380"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new"
systemctl start etcd
systemctl enable etcd
systemctl status etcd
#在node02 节点上操作
vim /opt/etcd/cfg/etcd
#[Member]
ETCD_NAME="etcd03"            #修改
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_PEER_URLS="https://192.168.109.133:2380"    #修改
ETCD_LISTEN_CLIENT_URLS="https://192.168.109.133:2379"  #修改
#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.109.133:2380"  #修改
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.109.133:2379"    #修改
ETCD_INITIAL_CLUSTER="etcd01 192.168.109.131 etcd02=https://192.168.109.132:2380,etcd03=https://192.168.109.133:2380"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new"
systemctl start etcd
systemctl enable etcd
systemctl status etcd



systemctl daemon-reload
systemctl restart etcd.service
systemctl enable etcd.service 
systemctl status etcd.service


3.5 检查群集状态

#检查etcd群集状态
#ETCDCTL_API=3表示v3版本的接口
cd /opt/etcd/ssl
#可查看到哪个是leader
ETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.109.131:2379,https://192.168.109.132:2379,https://192.168.109.133:2379" endpoint status --write-out=table
ETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.109.131:2379,https://192.168.109.132:2379,https://192.168.109.133:2379" endpoint health --write-out=table
#查看etcd集群成员列表
ETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.109.131:2379,https://192.168.109.132:2379,https://192.168.109.133:2379" --write-out=table member list


–cert-file:识别HTTPS端使用SSL证书文件

–key-file:使用此SSL密钥文件标识HTTPS客户端

–ca-file:使用此CA证书验证启用https的服务器的证书

–endpoints:集群中以逗号分隔的机器地址列表

cluster-health:检查etcd集群的运行状况


相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
2天前
|
存储 运维 Kubernetes
云原生之旅:Kubernetes的弹性与可扩展性探索
【10月更文挑战第32天】在云计算的浪潮中,云原生技术以其独特的魅力成为开发者的新宠。本文将深入探讨Kubernetes如何通过其弹性和可扩展性,助力应用在复杂环境中稳健运行。我们将从基础架构出发,逐步揭示Kubernetes集群管理、服务发现、存储机制及自动扩缩容等核心功能,旨在为读者呈现一个全景式的云原生平台视图。
12 1
|
6天前
|
Kubernetes 负载均衡 Cloud Native
云原生应用:Kubernetes在容器编排中的实践与挑战
【10月更文挑战第27天】Kubernetes(简称K8s)是云原生应用的核心容器编排平台,提供自动化、扩展和管理容器化应用的能力。本文介绍Kubernetes的基本概念、安装配置、核心组件(如Pod和Deployment)、服务发现与负载均衡、网络配置及安全性挑战,帮助读者理解和实践Kubernetes在容器编排中的应用。
29 4
|
7天前
|
Kubernetes 监控 Cloud Native
云原生应用:Kubernetes在容器编排中的实践与挑战
【10月更文挑战第26天】随着云计算技术的发展,容器化成为现代应用部署的核心趋势。Kubernetes(K8s)作为容器编排领域的佼佼者,以其强大的可扩展性和自动化能力,为开发者提供了高效管理和部署容器化应用的平台。本文将详细介绍Kubernetes的基本概念、核心组件、实践过程及面临的挑战,帮助读者更好地理解和应用这一技术。
29 3
|
18天前
|
运维 Cloud Native 持续交付
云原生架构的演进与实践####
【10月更文挑战第16天】 云原生,这一概念自提出以来,便以其独特的魅力和无限的可能性,引领着现代软件开发与部署的新浪潮。本文旨在探讨云原生架构的核心理念、关键技术及其在实际项目中的应用实践,揭示其如何帮助企业实现更高效、更灵活、更可靠的IT系统构建与管理。通过深入剖析容器化、微服务、持续集成/持续部署(CI/CD)等核心技术,结合具体案例,本文将展现云原生架构如何赋能企业数字化转型,推动业务创新与发展。 ####
118 47
|
6天前
|
弹性计算 Kubernetes Cloud Native
云原生架构下的微服务设计原则与实践####
本文深入探讨了在云原生环境中,微服务架构的设计原则、关键技术及实践案例。通过剖析传统单体架构面临的挑战,引出微服务作为解决方案的优势,并详细阐述了微服务设计的几大核心原则:单一职责、独立部署、弹性伸缩和服务自治。文章还介绍了容器化技术、Kubernetes等云原生工具如何助力微服务的高效实施,并通过一个实际项目案例,展示了从服务拆分到持续集成/持续部署(CI/CD)流程的完整实现路径,为读者提供了宝贵的实践经验和启发。 ####
|
13天前
|
Kubernetes Cloud Native 持续交付
云端新纪元:云原生技术重塑IT架构####
【10月更文挑战第20天】 本文深入探讨了云原生技术的兴起背景、核心理念、关键技术组件以及它如何引领现代IT架构迈向更高效、灵活与可扩展的新阶段。通过剖析Kubernetes、微服务、Docker等核心技术,本文揭示了云原生架构如何优化资源利用、加速应用开发与部署流程,并促进企业数字化转型的深度实践。 ####
|
12天前
|
监控 Cloud Native Java
云原生架构下微服务治理策略与实践####
【10月更文挑战第20天】 本文深入探讨了云原生环境下微服务架构的治理策略,通过分析当前技术趋势与挑战,提出了一系列高效、可扩展的微服务治理最佳实践方案。不同于传统摘要概述内容要点,本部分直接聚焦于治理核心——如何在动态多变的分布式系统中实现服务的自动发现、配置管理、流量控制及故障恢复,旨在为开发者提供一套系统性的方法论,助力企业在云端构建更加健壮、灵活的应用程序。 ####
58 10
|
7天前
|
Kubernetes Cloud Native API
云原生架构下微服务治理的深度探索与实践####
本文旨在深入剖析云原生环境下微服务治理的核心要素与最佳实践,通过实际案例分析,揭示高效、稳定的微服务架构设计原则及实施策略。在快速迭代的云计算领域,微服务架构以其高度解耦、灵活扩展的特性成为众多企业的首选。然而,伴随而来的服务间通信、故障隔离、配置管理等挑战亦不容忽视。本研究聚焦于云原生技术栈如何赋能微服务治理,涵盖容器编排(如Kubernetes)、服务网格(如Istio/Envoy)、API网关、分布式追踪系统等关键技术组件的应用与优化,为读者提供一套系统性的解决方案框架,助力企业在云端构建更加健壮、可维护的服务生态。 ####
|
7天前
|
监控 安全 Cloud Native
云原生安全:Istio在微服务架构中的安全策略与实践
【10月更文挑战第26天】随着云计算的发展,云原生架构成为企业数字化转型的关键。微服务作为其核心组件,虽具备灵活性和可扩展性,但也带来安全挑战。Istio作为开源服务网格,通过双向TLS加密、细粒度访问控制和强大的审计监控功能,有效保障微服务间的通信安全,成为云原生安全的重要工具。
25 2
|
7天前
|
弹性计算 监控 Cloud Native
云原生架构下的性能优化实践与策略####
在数字化转型加速的今天,云原生技术以其弹性、敏捷和高效的特点成为企业IT架构转型的首选。本文深入探讨了云原生架构的核心理念,通过具体案例分析,揭示了性能优化的关键路径与策略,为开发者和企业提供了可操作的实践指南。 ####