【人工智能】卷积神经网络

简介: 【人工智能】卷积神经网络

用CNN实现离散数据的分类(以图像分类为例子)


感受野

感受野(Receptive Field):卷积神经网络各输出特征图中的每个像素点,在原始输入图片上映射区域的大小

全零填充

目的:希望卷积计算保持输入特征图的尺寸不变

卷积输出特征图维度的计算公式

q6.png

使用全零填充 padding = "SAME"

不使用全零填充 padding = "VALID"

TF描述卷积层

tf.keras.layers.Conv2D(
    filters = 卷积个数,
    kernel_size = 卷积核尺寸, # 正方形写 核长整数 或 (核高h,核宽w)
    strides = 滑动步长,# 横纵向相同写 步长整数 或 (纵向步长h,横向步长w),默认1
    padding = "same" or "valid" # 默认valid,不使用全零填充。
    activation = "relu" or "signmoid" or "tanh" or "softmax" 等 # 如果有BN此处不写
    input_shape = (高、宽、通道数) # 输入特征图维度,可省略
)

批标准化(BN)

批标准化(Batch Normalization)

  • 标准化:使数据符合0均值,1为标准差的分布
  • 批标准化:对一小批数据(batch),做标准化处理

批标准化后,第k个卷积核的输出特征图(feature map)中第i个像素点

可以通过下面式子计算批标准化后的输出特征图

q5.png

H'表示第k个卷积核,输出特征图中的第i个像素点

批标准化操作会让每个像素点进行减=均值除以标准差的自更新计算,对于第k个卷积核,batch张输出特征图中,所有数值的平均值和标准差

q4.png

BN为每个卷积核引入可训练参数γ和β,调整批归一化的力度

q3.png

池化

池化用于减少特征数据量

池化方法

  • 最大值池化可提取图片纹理
  • 均值池化可保证背景特征

TF描述池化:

tf.keras.layers.MaxPool2D(
    pool_size = 池化尺寸, # 正方形写核长整数 或(核高h,核宽w)
    strides = 池化步长, # 步长整数 或(纵向步长h,横向步长w),默认为pool_size
    padding = "valid" or "same" # 默认valid,不使用全零填充
)
tf.keras.layers.AveragePooling2D(
    pool_size = 池化尺寸, # 正方形写核长整数 或(核高h,核宽w)
    strides = 池化步长, # 步长整数 或(纵向步长h,横向步长w),默认为pool_size
    padding = "valid" or "same" # 默认valid,不使用全零填充
)

舍弃

目的:缓解神经网络过拟合

在神经网络训练时,将一部分神经元按照一定概率从神经网络中暂时舍弃。神经网络使用时,被舍弃的神经元恢复链接

TF描述池化:tf.keras.layers.Dropout(舍弃的概率)

卷积神经网络


q2.png

卷积神经网络的主要模块

【卷积(Convolutional) -> 批标准化(BN) -> 激活(Activation) -> 池化(Pooling) ->】-> 全连接(FC)

卷积是什么:卷积就是特征提取器,就是CBAPD

model = tf.keras.models.Sequential([
    Conv2D(filters = 6,kernel_size=(5,5),padding='same'),# 卷积层 C
    BatchNormalization(),# 批标准化。 BN层 B
    Activation('relu'), # 激活层 A
    MaxPool2D(pool_size=(2,2),strides=2,padding='same') # 池化层 P
    Dropout(0.2), # 舍弃。  dropout层 D
])

Cifar10数据集


提供五万张32 * 32像素点的十分类彩色图片和标签,用于训练

提供一万张32 * 32像素点的十分类彩色图片和标签,用于测试

(每张图片有32行 32列像素点的红绿蓝三通道数据)

导入cifar10数据集

cifar10 = tf.keras.datasets.cifar10
(x_train,y_train),(x_test,y_test) = cifar10.load_data()

完整代码如下:

import tensorflow as tf
from matplotlib import pyplot as plt
import numpy as np
np.set_printoptions(threshold=np.inf)
cifar10 = tf.keras.datasets.cifar10
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
# 可视化训练集输入特征的第一个元素
plt.imshow(x_train[0])  # 绘制图片
plt.show()
# # 打印出训练集输入特征的第一个元素
# print("x_train[0]:\n", x_train[0])
# # 打印出训练集标签的第一个元素
# print("y_train[0]:\n", y_train[0])
# # 打印出整个训练集输入特征形状
# print("x_train.shape:\n", x_train.shape)
# # 打印出整个训练集标签的形状
# print("y_train.shape:\n", y_train.shape)
# # 打印出整个测试集输入特征的形状
# print("x_test.shape:\n", x_test.shape)
# # 打印出整个测试集标签的形状
# print("y_test.shape:\n", y_test.shape)
## 需要查看运行结果自行解除这一大段的注释

q1.png

卷积神经网络搭建


·

搭建一个一层卷积,两层全连接的网络

使用5个5X5的卷积核 ( 5*5 conv,filter=6)过2X2的池化核,池化步长是2(2*2 pool,strides=2),过128个神经元的全连接层(Dense 128

由于cifar10是十分类,因此最后还要过一层十个神经元的全连接层

进行分析,分析思路CBAPD

C (核:6 * 6 * 5 ;步长:1 ;填充:same)

B (Yes) # 意为使用批标准化

A (relu)

P (max;核:2 * 2 ;步长:2 ; 填充:same)

D (0.2) # 把20%的神经元休眠

Flatten

Dense(神经元:128 ; 激活:relu ; Dropout:0.2)

Dense(神经元:10 ; 激活:softmax) # 过softmax函数使输出符合概率分布

代码实现如下:

from tensorflow.keras import Model
class Baseline(Model):
    def __init__(self):
        super(Baseline, self).__init__()
        self.c1 = Conv2D(filters=6, kernel_size=(5, 5), padding='same')  # 卷积层
        self.b1 = BatchNormalization()  # BN层
        self.a1 = Activation('relu')  # 激活层
        self.p1 = MaxPool2D(pool_size=(2, 2), strides=2, padding='same')  # 池化层
        self.d1 = Dropout(0.2)  # dropout层
        self.flatten = Flatten() # 拉直
        self.f1 = Dense(128, activation='relu')
        self.d2 = Dropout(0.2) # 按照20%比例休眠神经元
        self.f2 = Dense(10, activation='softmax')
def call(self, x):
        x = self.c1(x)
        x = self.b1(x)
        x = self.a1(x)
        x = self.p1(x)
        x = self.d1(x)
        x = self.flatten(x)
        x = self.f1(x)
        x = self.d2(x)
        y = self.f2(x)
        return y

完整代码如下:

import tensorflow as tf
import os
import numpy as np
from matplotlib import pyplot as plt
from tensorflow.keras.layers import Conv2D, BatchNormalization, Activation, MaxPool2D, Dropout, Flatten, Dense
from tensorflow.keras import Model
np.set_printoptions(threshold=np.inf)
cifar10 = tf.keras.datasets.cifar10
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
class Baseline(Model):
    def __init__(self):
        super(Baseline, self).__init__()
        self.c1 = Conv2D(filters=6, kernel_size=(5, 5), padding='same')  # 卷积层
        self.b1 = BatchNormalization()  # BN层
        self.a1 = Activation('relu')  # 激活层
        self.p1 = MaxPool2D(pool_size=(2, 2), strides=2, padding='same')  # 池化层
        self.d1 = Dropout(0.2)  # dropout层
        self.flatten = Flatten()
        self.f1 = Dense(128, activation='relu')
        self.d2 = Dropout(0.2)
        self.f2 = Dense(10, activation='softmax')
    def call(self, x):
        x = self.c1(x)
        x = self.b1(x)
        x = self.a1(x)
        x = self.p1(x)
        x = self.d1(x)
        x = self.flatten(x)
        x = self.f1(x)
        x = self.d2(x)
        y = self.f2(x)
        return y
model = Baseline()
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])
checkpoint_save_path = "./checkpoint/Baseline.ckpt"
if os.path.exists(checkpoint_save_path + '.index'):
    print('-------------load the model-----------------')
    model.load_weights(checkpoint_save_path)
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                                 save_weights_only=True,
                                                 save_best_only=True)
history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1,
                    callbacks=[cp_callback])
model.summary()
# print(model.trainable_variables)
file = open('./weights.txt', 'w')
for v in model.trainable_variables:
    file.write(str(v.name) + '\n')
    file.write(str(v.shape) + '\n')
    file.write(str(v.numpy()) + '\n')
file.close()
###############################################    show   ###############################################
# 显示训练集和验证集的acc和loss曲线
acc = history.history['sparse_categorical_accuracy']
val_acc = history.history['val_sparse_categorical_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
plt.subplot(1, 2, 1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()
-------------load the model-----------------
Epoch 1/5
1563/1563 [==============================] - 26s 16ms/step - loss: 1.2335 - sparse_categorical_accuracy: 0.5620 - val_loss: 1.2375 - val_sparse_categorical_accuracy: 0.5685
Epoch 2/5
1563/1563 [==============================] - 24s 15ms/step - loss: 1.2030 - sparse_categorical_accuracy: 0.5734 - val_loss: 1.2196 - val_sparse_categorical_accuracy: 0.5750
Epoch 3/5
1563/1563 [==============================] - 24s 15ms/step - loss: 1.1676 - sparse_categorical_accuracy: 0.5847 - val_loss: 1.2254 - val_sparse_categorical_accuracy: 0.5701
Epoch 4/5
1563/1563 [==============================] - 23s 15ms/step - loss: 1.1474 - sparse_categorical_accuracy: 0.5944 - val_loss: 1.1421 - val_sparse_categorical_accuracy: 0.5985
Epoch 5/5
1563/1563 [==============================] - 24s 15ms/step - loss: 1.1188 - sparse_categorical_accuracy: 0.6034 - val_loss: 1.0880 - val_sparse_categorical_accuracy: 0.6209
Model: "baseline_1"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_8 (Conv2D)            multiple                  456       
_________________________________________________________________
batch_normalization_3 (Batch multiple                  24        
_________________________________________________________________
activation_3 (Activation)    multiple                  0         
_________________________________________________________________
max_pooling2d_6 (MaxPooling2 multiple                  0         
_________________________________________________________________
dropout_4 (Dropout)          multiple                  0         
_________________________________________________________________
flatten_3 (Flatten)          multiple                  0         
_________________________________________________________________
dense_8 (Dense)              multiple                  196736    
_________________________________________________________________
dropout_5 (Dropout)          multiple                  0         
_________________________________________________________________
dense_9 (Dense)              multiple                  1290      
=================================================================
Total params: 198,506
Trainable params: 198,494
Non-trainable params: 12
_________________________________________________________________

q6.png

经典卷积网络


下面使用六步法,分别实现LeNET、AlexNet,VGGNet,INceptionNet和ResNet卷积神经网络

LetNet

由Yann LeCun 于1998年提出,卷积网络的开篇之作

特点:通过共享卷积核减少了网络的参数

import tensorflow as tf
import os
import numpy as np
from matplotlib import pyplot as plt
from tensorflow.keras.layers import Conv2D, BatchNormalization, Activation, MaxPool2D, Dropout, Flatten, Dense
from tensorflow.keras import Model
np.set_printoptions(threshold=np.inf)
cifar10 = tf.keras.datasets.cifar10
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
class LeNet5(Model):
    def __init__(self):
        super(LeNet5, self).__init__()
        self.c1 = Conv2D(filters=6, kernel_size=(5, 5),
                         activation='sigmoid')
        self.p1 = MaxPool2D(pool_size=(2, 2), strides=2)
        self.c2 = Conv2D(filters=16, kernel_size=(5, 5),
                         activation='sigmoid')
        self.p2 = MaxPool2D(pool_size=(2, 2), strides=2)
        self.flatten = Flatten()
        self.f1 = Dense(120, activation='sigmoid')
        self.f2 = Dense(84, activation='sigmoid')
        self.f3 = Dense(10, activation='softmax')
    def call(self, x):
        x = self.c1(x)
        x = self.p1(x)
        x = self.c2(x)
        x = self.p2(x)
        x = self.flatten(x)
        x = self.f1(x)
        x = self.f2(x)
        y = self.f3(x)
        return y
model = LeNet5()
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])
checkpoint_save_path = "./checkpoint/LeNet5.ckpt"
if os.path.exists(checkpoint_save_path + '.index'):
    print('-------------load the model-----------------')
    model.load_weights(checkpoint_save_path)
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                                 save_weights_only=True,
                                                 save_best_only=True)
history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1,
                    callbacks=[cp_callback])
model.summary()
# print(model.trainable_variables)
file = open('./weights.txt', 'w')
for v in model.trainable_variables:
    file.write(str(v.name) + '\n')
    file.write(str(v.shape) + '\n')
    file.write(str(v.numpy()) + '\n')
file.close()
###############################################    show   ###############################################
# 显示训练集和验证集的acc和loss曲线
acc = history.history['sparse_categorical_accuracy']
val_acc = history.history['val_sparse_categorical_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
plt.subplot(1, 2, 1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()
-------------load the model-----------------
Epoch 1/5
1563/1563 [==============================] - 14s 9ms/step - loss: 1.4006 - sparse_categorical_accuracy: 0.4928 - val_loss: 1.4194 - val_sparse_categorical_accuracy: 0.4890
Epoch 2/5
1563/1563 [==============================] - 14s 9ms/step - loss: 1.3587 - sparse_categorical_accuracy: 0.5080 - val_loss: 1.3741 - val_sparse_categorical_accuracy: 0.5016
Epoch 3/5
1563/1563 [==============================] - 14s 9ms/step - loss: 1.3173 - sparse_categorical_accuracy: 0.5259 - val_loss: 1.3523 - val_sparse_categorical_accuracy: 0.5183
Epoch 4/5
1563/1563 [==============================] - 14s 9ms/step - loss: 1.2885 - sparse_categorical_accuracy: 0.5388 - val_loss: 1.3057 - val_sparse_categorical_accuracy: 0.5287
Epoch 5/5
1563/1563 [==============================] - 15s 10ms/step - loss: 1.2573 - sparse_categorical_accuracy: 0.5479 - val_loss: 1.2753 - val_sparse_categorical_accuracy: 0.5411
Model: "le_net5_1"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_9 (Conv2D)            multiple                  456       
_________________________________________________________________
max_pooling2d_7 (MaxPooling2 multiple                  0         
_________________________________________________________________
conv2d_10 (Conv2D)           multiple                  2416      
_________________________________________________________________
max_pooling2d_8 (MaxPooling2 multiple                  0         
_________________________________________________________________
flatten_4 (Flatten)          multiple                  0         
_________________________________________________________________
dense_10 (Dense)             multiple                  48120     
_________________________________________________________________
dense_11 (Dense)             multiple                  10164     
_________________________________________________________________
dense_12 (Dense)             multiple                  850       
=================================================================
Total params: 62,006
Trainable params: 62,006
Non-trainable params: 0
_________________________________________________________________

q5.png

AlexNet

Alex网络诞生于2012年,当年ImageNet竞赛冠军,Top5错误率为16.4%

AlexNet使用了激活函数relu,提升了训练速度,使用Dropout缓解了过拟合

import tensorflow as tf
import os
import numpy as np
from matplotlib import pyplot as plt
from tensorflow.keras.layers import Conv2D, BatchNormalization, Activation, MaxPool2D, Dropout, Flatten, Dense
from tensorflow.keras import Model
np.set_printoptions(threshold=np.inf)
cifar10 = tf.keras.datasets.cifar10
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
class AlexNet8(Model):
    def __init__(self):
        super(AlexNet8, self).__init__()
        self.c1 = Conv2D(filters=96, kernel_size=(3, 3))
        self.b1 = BatchNormalization()
        self.a1 = Activation('relu')
        self.p1 = MaxPool2D(pool_size=(3, 3), strides=2)
        self.c2 = Conv2D(filters=256, kernel_size=(3, 3))
        self.b2 = BatchNormalization()
        self.a2 = Activation('relu')
        self.p2 = MaxPool2D(pool_size=(3, 3), strides=2)
        self.c3 = Conv2D(filters=384, kernel_size=(3, 3), padding='same',
                         activation='relu')
        self.c4 = Conv2D(filters=384, kernel_size=(3, 3), padding='same',
                         activation='relu')
        self.c5 = Conv2D(filters=256, kernel_size=(3, 3), padding='same',
                         activation='relu')
        self.p3 = MaxPool2D(pool_size=(3, 3), strides=2)
        self.flatten = Flatten()
        self.f1 = Dense(2048, activation='relu')
        self.d1 = Dropout(0.5)
        self.f2 = Dense(2048, activation='relu')
        self.d2 = Dropout(0.5)
        self.f3 = Dense(10, activation='softmax')
    def call(self, x):
        x = self.c1(x)
        x = self.b1(x)
        x = self.a1(x)
        x = self.p1(x)
        x = self.c2(x)
        x = self.b2(x)
        x = self.a2(x)
        x = self.p2(x)
        x = self.c3(x)
        x = self.c4(x)
        x = self.c5(x)
        x = self.p3(x)
        x = self.flatten(x)
        x = self.f1(x)
        x = self.d1(x)
        x = self.f2(x)
        x = self.d2(x)
        y = self.f3(x)
        return y
model = AlexNet8()
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])
checkpoint_save_path = "./checkpoint/AlexNet8.ckpt"
if os.path.exists(checkpoint_save_path + '.index'):
    print('-------------load the model-----------------')
    model.load_weights(checkpoint_save_path)
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                                 save_weights_only=True,
                                                 save_best_only=True)
history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1,
                    callbacks=[cp_callback])
model.summary()
# print(model.trainable_variables)
file = open('./weights.txt', 'w')
for v in model.trainable_variables:
    file.write(str(v.name) + '\n')
    file.write(str(v.shape) + '\n')
    file.write(str(v.numpy()) + '\n')
file.close()
###############################################    show   ###############################################
# 显示训练集和验证集的acc和loss曲线
acc = history.history['sparse_categorical_accuracy']
val_acc = history.history['val_sparse_categorical_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
plt.subplot(1, 2, 1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()
-------------load the model-----------------
Epoch 1/5
1563/1563 [==============================] - 356s 228ms/step - loss: 1.0504 - sparse_categorical_accuracy: 0.6369 - val_loss: 1.1432 - val_sparse_categorical_accuracy: 0.6150
Epoch 2/5
1563/1563 [==============================] - 389s 249ms/step - loss: 0.9855 - sparse_categorical_accuracy: 0.6604 - val_loss: 1.1803 - val_sparse_categorical_accuracy: 0.5829
Epoch 3/5
1563/1563 [==============================] - 337s 215ms/step - loss: 0.9361 - sparse_categorical_accuracy: 0.6803 - val_loss: 1.2742 - val_sparse_categorical_accuracy: 0.5517
Epoch 4/5
1563/1563 [==============================] - 325s 208ms/step - loss: 0.8906 - sparse_categorical_accuracy: 0.6949 - val_loss: 1.0693 - val_sparse_categorical_accuracy: 0.6268
Epoch 5/5
1563/1563 [==============================] - 332s 212ms/step - loss: 0.8532 - sparse_categorical_accuracy: 0.7078 - val_loss: 1.2640 - val_sparse_categorical_accuracy: 0.5811
Model: "alex_net8_1"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_11 (Conv2D)           multiple                  2688      
_________________________________________________________________
batch_normalization_4 (Batch multiple                  384       
_________________________________________________________________
activation_4 (Activation)    multiple                  0         
_________________________________________________________________
max_pooling2d_9 (MaxPooling2 multiple                  0         
_________________________________________________________________
conv2d_12 (Conv2D)           multiple                  221440    
_________________________________________________________________
batch_normalization_5 (Batch multiple                  1024      
_________________________________________________________________
activation_5 (Activation)    multiple                  0         
_________________________________________________________________
max_pooling2d_10 (MaxPooling multiple                  0         
_________________________________________________________________
conv2d_13 (Conv2D)           multiple                  885120    
_________________________________________________________________
conv2d_14 (Conv2D)           multiple                  1327488   
_________________________________________________________________
conv2d_15 (Conv2D)           multiple                  884992    
_________________________________________________________________
max_pooling2d_11 (MaxPooling multiple                  0         
_________________________________________________________________
flatten_5 (Flatten)          multiple                  0         
_________________________________________________________________
dense_13 (Dense)             multiple                  2099200   
_________________________________________________________________
dropout_6 (Dropout)          multiple                  0         
_________________________________________________________________
dense_14 (Dense)             multiple                  4196352   
_________________________________________________________________
dropout_7 (Dropout)          multiple                  0         
_________________________________________________________________
dense_15 (Dense)             multiple                  20490     
=================================================================
Total params: 9,639,178
Trainable params: 9,638,474
Non-trainable params: 704
_________________________________________________________________

q4.png

VGGNet

诞生于2014年,当年ImageNet竞赛冠军,Top5错误率减小到7.3%

使用了VGG卷积核,在减少了参数的同时提高之别准确率

import tensorflow as tf
import os
import numpy as np
from matplotlib import pyplot as plt
from tensorflow.keras.layers import Conv2D, BatchNormalization, Activation, MaxPool2D, Dropout, Flatten, Dense
from tensorflow.keras import Model
np.set_printoptions(threshold=np.inf)
cifar10 = tf.keras.datasets.cifar10
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
class AlexNet8(Model):
    def __init__(self):
        super(AlexNet8, self).__init__()
        self.c1 = Conv2D(filters=96, kernel_size=(3, 3))
        self.b1 = BatchNormalization()
        self.a1 = Activation('relu')
        self.p1 = MaxPool2D(pool_size=(3, 3), strides=2)
        self.c2 = Conv2D(filters=256, kernel_size=(3, 3))
        self.b2 = BatchNormalization()
        self.a2 = Activation('relu')
        self.p2 = MaxPool2D(pool_size=(3, 3), strides=2)
        self.c3 = Conv2D(filters=384, kernel_size=(3, 3), padding='same',
                         activation='relu')
        self.c4 = Conv2D(filters=384, kernel_size=(3, 3), padding='same',
                         activation='relu')
        self.c5 = Conv2D(filters=256, kernel_size=(3, 3), padding='same',
                         activation='relu')
        self.p3 = MaxPool2D(pool_size=(3, 3), strides=2)
        self.flatten = Flatten()
        self.f1 = Dense(2048, activation='relu')
        self.d1 = Dropout(0.5)
        self.f2 = Dense(2048, activation='relu')
        self.d2 = Dropout(0.5)
        self.f3 = Dense(10, activation='softmax')
    def call(self, x):
        x = self.c1(x)
        x = self.b1(x)
        x = self.a1(x)
        x = self.p1(x)
        x = self.c2(x)
        x = self.b2(x)
        x = self.a2(x)
        x = self.p2(x)
        x = self.c3(x)
        x = self.c4(x)
        x = self.c5(x)
        x = self.p3(x)
        x = self.flatten(x)
        x = self.f1(x)
        x = self.d1(x)
        x = self.f2(x)
        x = self.d2(x)
        y = self.f3(x)
        return y
model = AlexNet8()
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])
checkpoint_save_path = "./checkpoint/AlexNet8.ckpt"
if os.path.exists(checkpoint_save_path + '.index'):
    print('-------------load the model-----------------')
    model.load_weights(checkpoint_save_path)
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                                 save_weights_only=True,
                                                 save_best_only=True)
history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1,
                    callbacks=[cp_callback])
model.summary()
# print(model.trainable_variables)
file = open('./weights.txt', 'w')
for v in model.trainable_variables:
    file.write(str(v.name) + '\n')
    file.write(str(v.shape) + '\n')
    file.write(str(v.numpy()) + '\n')
file.close()
###############################################    show   ###############################################
# 显示训练集和验证集的acc和loss曲线
acc = history.history['sparse_categorical_accuracy']
val_acc = history.history['val_sparse_categorical_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
plt.subplot(1, 2, 1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()
-------------load the model-----------------
Epoch 1/5
 179/1563 [==>...........................] - ETA: 4:14 - loss: 0.8443 - sparse_categorical_accuracy: 0.7139

InceptionNet

诞生于2014年,当年ImageNet竞赛冠军,Top5错误率为6.67%

引入了Inception结构块,在同一网络内使用不同尺寸的卷积核,提升模型感知力

使用了批标准化,缓解了梯度消失

import tensorflow as tf
import os
import numpy as np
from matplotlib import pyplot as plt
from tensorflow.keras.layers import Conv2D, BatchNormalization, Activation, MaxPool2D, Dropout, Flatten, Dense, \
    GlobalAveragePooling2D
from tensorflow.keras import Model
np.set_printoptions(threshold=np.inf)
cifar10 = tf.keras.datasets.cifar10
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
class ConvBNRelu(Model):
    def __init__(self, ch, kernelsz=3, strides=1, padding='same'):
        super(ConvBNRelu, self).__init__()
        self.model = tf.keras.models.Sequential([
            Conv2D(ch, kernelsz, strides=strides, padding=padding),
            BatchNormalization(),
            Activation('relu')
        ])
    def call(self, x):
        x = self.model(x, training=False) #在training=False时,BN通过整个训练集计算均值、方差去做批归一化,training=True时,通过当前batch的均值、方差去做批归一化。推理时 training=False效果好
        return x
class InceptionBlk(Model):
    def __init__(self, ch, strides=1):
        super(InceptionBlk, self).__init__()
        self.ch = ch
        self.strides = strides
        self.c1 = ConvBNRelu(ch, kernelsz=1, strides=strides)
        self.c2_1 = ConvBNRelu(ch, kernelsz=1, strides=strides)
        self.c2_2 = ConvBNRelu(ch, kernelsz=3, strides=1)
        self.c3_1 = ConvBNRelu(ch, kernelsz=1, strides=strides)
        self.c3_2 = ConvBNRelu(ch, kernelsz=5, strides=1)
        self.p4_1 = MaxPool2D(3, strides=1, padding='same')
        self.c4_2 = ConvBNRelu(ch, kernelsz=1, strides=strides)
    def call(self, x):
        x1 = self.c1(x)
        x2_1 = self.c2_1(x)
        x2_2 = self.c2_2(x2_1)
        x3_1 = self.c3_1(x)
        x3_2 = self.c3_2(x3_1)
        x4_1 = self.p4_1(x)
        x4_2 = self.c4_2(x4_1)
        # concat along axis=channel
        x = tf.concat([x1, x2_2, x3_2, x4_2], axis=3)
        return x
class Inception10(Model):
    def __init__(self, num_blocks, num_classes, init_ch=16, **kwargs):
        super(Inception10, self).__init__(**kwargs)
        self.in_channels = init_ch
        self.out_channels = init_ch
        self.num_blocks = num_blocks
        self.init_ch = init_ch
        self.c1 = ConvBNRelu(init_ch)
        self.blocks = tf.keras.models.Sequential()
        for block_id in range(num_blocks):
            for layer_id in range(2):
                if layer_id == 0:
                    block = InceptionBlk(self.out_channels, strides=2)
                else:
                    block = InceptionBlk(self.out_channels, strides=1)
                self.blocks.add(block)
            # enlarger out_channels per block
            self.out_channels *= 2
        self.p1 = GlobalAveragePooling2D()
        self.f1 = Dense(num_classes, activation='softmax')
    def call(self, x):
        x = self.c1(x)
        x = self.blocks(x)
        x = self.p1(x)
        y = self.f1(x)
        return y
model = Inception10(num_blocks=2, num_classes=10)
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])
checkpoint_save_path = "./checkpoint/Inception10.ckpt"
if os.path.exists(checkpoint_save_path + '.index'):
    print('-------------load the model-----------------')
    model.load_weights(checkpoint_save_path)
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                                 save_weights_only=True,
                                                 save_best_only=True)
history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1,
                    callbacks=[cp_callback])
model.summary()
# print(model.trainable_variables)
file = open('./weights.txt', 'w')
for v in model.trainable_variables:
    file.write(str(v.name) + '\n')
    file.write(str(v.shape) + '\n')
    file.write(str(v.numpy()) + '\n')
file.close()
###############################################    show   ###############################################
# 显示训练集和验证集的acc和loss曲线
acc = history.history['sparse_categorical_accuracy']
val_acc = history.history['val_sparse_categorical_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
plt.subplot(1, 2, 1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()

ResNet

诞生于2015年,当年ImageNet竞赛冠军,Top5错误率为3.57%

ResNet提出了层间残差跳连,引入前方信息,缓解梯度消失,使神经网络层数增加成为可能。

q3.png

有效缓解神经网络模型堆叠造成退化的问题,使得神经网络可以向更深层次发展

q2.png

import tensorflow as tf
import os
import numpy as np
from matplotlib import pyplot as plt
from tensorflow.keras.layers import Conv2D, BatchNormalization, Activation, MaxPool2D, Dropout, Flatten, Dense
from tensorflow.keras import Model
np.set_printoptions(threshold=np.inf)
cifar10 = tf.keras.datasets.cifar10
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
class ResnetBlock(Model):
    def __init__(self, filters, strides=1, residual_path=False):
        super(ResnetBlock, self).__init__()
        self.filters = filters
        self.strides = strides
        self.residual_path = residual_path
        self.c1 = Conv2D(filters, (3, 3), strides=strides, padding='same', use_bias=False)
        self.b1 = BatchNormalization()
        self.a1 = Activation('relu')
        self.c2 = Conv2D(filters, (3, 3), strides=1, padding='same', use_bias=False)
        self.b2 = BatchNormalization()
        # residual_path为True时,对输入进行下采样,即用1x1的卷积核做卷积操作,保证x能和F(x)维度相同,顺利相加
        if residual_path:
            self.down_c1 = Conv2D(filters, (1, 1), strides=strides, padding='same', use_bias=False)
            self.down_b1 = BatchNormalization()
        self.a2 = Activation('relu')
    def call(self, inputs):
        residual = inputs  # residual等于输入值本身,即residual=x
        # 将输入通过卷积、BN层、激活层,计算F(x)
        x = self.c1(inputs)
        x = self.b1(x)
        x = self.a1(x)
        x = self.c2(x)
        y = self.b2(x)
        if self.residual_path:
            residual = self.down_c1(inputs)
            residual = self.down_b1(residual)
        out = self.a2(y + residual)  # 最后输出的是两部分的和,即F(x)+x或F(x)+Wx,再过激活函数
        return out
class ResNet18(Model):
    def __init__(self, block_list, initial_filters=64):  # block_list表示每个block有几个卷积层
        super(ResNet18, self).__init__()
        self.num_blocks = len(block_list)  # 共有几个block
        self.block_list = block_list
        self.out_filters = initial_filters
        self.c1 = Conv2D(self.out_filters, (3, 3), strides=1, padding='same', use_bias=False)
        self.b1 = BatchNormalization()
        self.a1 = Activation('relu')
        self.blocks = tf.keras.models.Sequential()
        # 构建ResNet网络结构
        for block_id in range(len(block_list)):  # 第几个resnet block
            for layer_id in range(block_list[block_id]):  # 第几个卷积层
                if block_id != 0 and layer_id == 0:  # 对除第一个block以外的每个block的输入进行下采样
                    block = ResnetBlock(self.out_filters, strides=2, residual_path=True)
                else:
                    block = ResnetBlock(self.out_filters, residual_path=False)
                self.blocks.add(block)  # 将构建好的block加入resnet
            self.out_filters *= 2  # 下一个block的卷积核数是上一个block的2倍
        self.p1 = tf.keras.layers.GlobalAveragePooling2D()
        self.f1 = tf.keras.layers.Dense(10, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2())
    def call(self, inputs):
        x = self.c1(inputs)
        x = self.b1(x)
        x = self.a1(x)
        x = self.blocks(x)
        x = self.p1(x)
        y = self.f1(x)
        return y
model = ResNet18([2, 2, 2, 2])
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])
checkpoint_save_path = "./checkpoint/ResNet18.ckpt"
if os.path.exists(checkpoint_save_path + '.index'):
    print('-------------load the model-----------------')
    model.load_weights(checkpoint_save_path)
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                                 save_weights_only=True,
                                                 save_best_only=True)
history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1,
                    callbacks=[cp_callback])
model.summary()
# print(model.trainable_variables)
file = open('./weights.txt', 'w')
for v in model.trainable_variables:
    file.write(str(v.name) + '\n')
    file.write(str(v.shape) + '\n')
    file.write(str(v.numpy()) + '\n')
file.close()
###############################################    show   ###############################################
# 显示训练集和验证集的acc和loss曲线
acc = history.history['sparse_categorical_accuracy']
val_acc = history.history['val_sparse_categorical_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
plt.subplot(1, 2, 1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()

经典卷积网络总结

q1.png

相关文章
|
22天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
|
1月前
|
机器学习/深度学习 人工智能 算法
深度解析:基于卷积神经网络的宠物识别
宠物识别技术随着饲养规模扩大而兴起,传统手段存在局限性,基于卷积神经网络的宠物识别技术应运而生。快瞳AI通过优化MobileNet-SSD架构、多尺度特征融合及动态网络剪枝等技术,实现高效精准识别。其在智能家居、宠物医疗和防走失领域展现广泛应用前景,为宠物管理带来智能化解决方案,推动行业迈向新高度。
|
28天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于PSO(粒子群优化)改进TCN(时间卷积神经网络)的时间序列预测方法。使用Matlab2022a运行,完整程序无水印,附带核心代码中文注释及操作视频。TCN通过因果卷积层与残差连接处理序列数据,PSO优化其卷积核权重等参数以降低预测误差。算法中,粒子根据个体与全局最优位置更新速度和位置,逐步逼近最佳参数组合,提升预测性能。
|
18天前
|
机器学习/深度学习 数据采集 并行计算
基于WOA鲸鱼优化的TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于TCN(Temporal Convolutional Network)与WOA(Whale Optimization Algorithm)的时间序列预测算法。TCN通过扩张卷积捕捉时间序列长距离依赖关系,结合批归一化和激活函数提取特征;WOA用于优化TCN网络参数,提高预测精度。算法流程包括数据归一化、种群初始化、适应度计算及参数更新等步骤。程序基于Matlab2022a/2024b开发,完整版含详细中文注释与操作视频,运行效果无水印展示。适用于函数优化、机器学习调参及工程设计等领域复杂任务。
|
18天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本内容涵盖基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测算法。完整程序运行效果无水印,适用于Matlab2022a版本。核心代码配有详细中文注释及操作视频。理论部分阐述了传统方法(如ARIMA)在非线性预测中的局限性,以及TCN结合PSO优化超参数的优势。模型由因果卷积层和残差连接组成,通过迭代训练与评估选择最优超参数,最终实现高精度预测,广泛应用于金融、气象等领域。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
|
3月前
|
机器学习/深度学习 算法 JavaScript
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
|
3月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
258 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
4月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
280 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。

热门文章

最新文章